Chapter 1--Structure and Bonding: Acids and Bases

	Student:
1.	Give the ground-state electron configuration for carbon (atomic number 6).
2.	Give the ground-state electron configuration for nitrogen (atomic number 7).
3.	Give the ground-state electron configuration for potassium (atomic number 19).

4.	How many electrons does potassium have in its valence shell?
5.	Narrative 1-1 Write valid Lewis (electron-dot) structures for each formula below. Show all electrons as dots and show all non-bonding electrons.
	Refer to Narrative 1-1. C ₂ Cl ₄ tetrachloroethylene
6.	Narrative 1-1 Write valid Lewis (electron-dot) structures for each formula below. Show all electrons as dots and show all non-bonding electrons.
	Refer to Narrative 1-1. CO ₂ carbon dioxide

Write valid Lewis (electron-dot) structures for each formula below. Show all electrons as dots and show all non-bonding electrons.

Refer to Narrative 1-1. CH_5N methylamine

8. The structure of urea is shown below. Fill in any non-bonding valence electrons that are missing from the line-bond structure.

$$\begin{matrix} \bigcirc\\ ||\\ \mathbf{H_2N-C-NH_2}\end{matrix}$$

The structure of urea is shown below. The carbon atom in urea is:

$$\begin{matrix} \bigcirc\\ ||\\ \mathbf{H_2N-C-NH_2}\end{matrix}$$

- sp³ hybridizedsp hybridizedsp hybridizednot hybridized

10. Narrative 1-2

Determine the hybridization for the indicated atoms in each structure below.

Refer to Narrative 1-2. The hybridization of this oxygen atom is ______.

Determine the hybridization for the indicated atoms in each structure below.

The hybridization of this oxygen atom is .

12. **Narrative 1-2**

Determine the hybridization for the indicated atoms in each structure below.

The hybridization of this carbon atom is _____.

Determine the hybridization for the indicated atoms in each structure below.

$$CH_3 - CH_2 - C - \ddot{Q} - H$$
 $12. \quad 13. \quad CH_3 - C \equiv N$

The hybridization of this carbon atom is _____.

14. Narrative 1-3

Consider the structure of Vitamin C to answer the following questions.

Refer to Narrative 1-3. Complete the Lewis electron-dot structure of Vitamin C, showing all lone-pair electrons.

Consider the structure of Vitamin C to answer the following questions.

Vitamin C

Refer to Narrative 1-3. The molecular formula C_HO can be converted into three-line bond (Kekulé) structures that are consistent with valence rules. Which one of the following Kekulé structures is *not* consistent with valence rules?

Consider the structure of Vitamin C to answer the following questions.

Vitamin C

Refer to Narrative 1-3. Explain why the structure you chose in question 15. is not consistent with valence rules.

17. Draw an orbital picture for acetylene, C₂H₂. Clearly label each bond type and indicate the type of orbitals involved in each bond.

18. Propose a structure for a molecule that meets the following description. Contains two sp hybridized carbons and two sp hybridized carbons.

19. Propose a structure for a molecule that meets the following description. Contains one sp^3 hybridized carbon and two sp^2 hybridized carbons.

20. Label the acid and base in the reaction below.

$$CH_3OH + NaH \longrightarrow CH_3O^-Na^+ + H_2$$

21. Label the acid and base in the reaction below.

22. Narrative 1-4

Refer to the following equation to answer the questions below. Place the letter corresponding to the correct answer in the blank.

Refer to Narrative 1-4. The strongest Brønsted-Lowry acid in the equation is ______.

Refer to the following equation to answer the questions below. Place the letter corresponding to the correct answer in the blank.

Refer to Narrative 1-4. The strongest Brønsted-Lowry base in the equation is ______.

Refer to the following equation to answer the questions below. Place the letter corresponding to the correct answer in the blank.

$$pK_{a} = 19$$

$$0$$

$$H_{3}C - C - CH_{3} + Na^{+} : NH_{2} - \frac{?}{} H_{3}C - C - \ddot{C}H_{2} \cdot Na^{+} + NH_{3}$$

$$\underline{\mathbf{A}} \quad \underline{\mathbf{B}} \quad \underline{\mathbf{C}} \quad \underline{\mathbf{D}}$$

Refer to Narrative 1-4. The equilibrium for this reaction:

- a. favors the reactants.
- b. is approximately 1.
- c. favors the products.
- d. cannot be predicted.

25. An acid with a low pK_a :

- a. is a weak acid
- b. is a strong acid
- c. has a weak conjugate base
- d. both b and c

Use the d-/d+ convention and the crossed arrow (+++) to show the direction of the expected polarity of the indicated bonds in the following compounds.

Refer to Narrative 1-5. The C-F bond in fluorobenzene,

27. Narrative 1-5

Use the d-/d+ convention and the crossed arrow (+++) to show the direction of the expected polarity of the indicated bonds in the following compounds.

Refer to Narrative 1-5. The C-Si bond in tetramethylsilane, $(CH_3)_4$ Si

Use the d-/d+ convention and the crossed arrow (+->) to show the direction of the expected polarity of the indicated bonds in the following compounds.

Refer to Narrative 1-5. The C-O bond in furan,

29. Circle all the Lewis bases in the group of compounds below.

HCl

FeB₁₃

30. Put a box around all the Lewis acids in the group of compounds below.

31. **Narrative 1-6**

Consider the acidity constants below to answer the questions.

<u>ACID</u>	STRUCTURE	$\underline{p}K_{\underline{a}}$
phenol	OH	10.00
ethanol	СН₃СН₂ОН	16.00
water	нон	15.74

Refer to Narrative 1-6. Which acid above will be almost completely deprotonated by NaOH?

Consider the acidity constants below to answer the questions.

<u>ACID</u>	STRUCTURE	pK_a
phenol	OH	10.00
ethanol	СН₃СН₂ОН	16.00
water	НОН	15.74

Refer to Narrative 1-6. Which acid has the *strongest* conjugate base?

Chapter 1--Structure and Bonding: Acids and Bases Key

$$^{1.}$$
 $1s^2 2s^2 2p_x 2p_y$ or $1s^2 2s^2 2p^2$

2
. $1s^{2}2s^{2}2p_{x}2p_{y}2p_{z}$ or $1s^{2}2s^{2}2p^{3}$

3.
$$1s^22s^22p^63s^23p^64s^1$$

4. one

6. O::C::O:

9. b. sp^2 hybridized

10. sp^2

11. sp^3

12. sp^{3}

13. sp

Vitamin C

15. d

16. The carbon bonded to the oxygen atom in structure d is pentavalent; it has 10 valence electrons. Carbon can only have eight valence electrons. In addition, the other carbon has only six valence electrons when it would prefer to have eight.

17.

 $^{18.}$ $_{3}$ C— $_{C}$ \equiv C— $_{C}$ $_{3}$

22. <u>A</u>

23. <u>B</u>

24. C

25. D

26.

27. CH_3 $H_3C - \stackrel{|\delta|}{\underset{|+|-|}{5}} + \stackrel{|\delta|}{\underset{|+|-|-|}{6}}$

29.

HС

BCl₃

FeBr3

30.

- 31. phenol
- 32. Ethanol is the weakest acid (largest pK_a) so its conjugate base, ethoxide, $CH_3CH_2O^-$, will be the strongest base.