

Introduction to Chemistry

General Comments

This experiment is designed to help students become familiar with the organization of the laboratory, to stimulate interest, and to acquaint them with safety procedures. Some students feel uncomfortable in not knowing the definitive explanation for their observations. These students can be reassured by pointing out that scientific hypotheses are necessarily tentative and that they will not be severely graded for an incorrect proposal.

A. Instructor Demonstrations

- 1. This demonstration is enhanced with the lights dimmed and is an opportunity to point out the use and location of the fire extinguisher.
- 2. This is an example of a substance (sugar) being broken down to another compound (water) and an element (carbon). You may wish to demonstrate the dehydrating effect of concentrated sulfuric acid (using a paper towel) while discussing the precautions in handling this acid.
- 3. The Instructor should comment on the danger of using concentrated nitric acid. State the principle of pouring concentrated reagents into water. You may also wish to discuss the location and use of distilled water versus tap water.
- 4. The equations for the formation of the precipitate and complex ion are:

 $\begin{array}{rcl} Cu^{2+}(aq) &+& 2 \ NH_4OH(aq) \rightarrow Cu(OH)_2(s) &+& 2 \ NH_4^+(aq) \\ and, & Cu^{2+}(aq) &+& 4 \ NH_4OH(aq) \rightarrow Cu(NH_3)_4^{2+}(aq) &+& 4 \ H_2O(l) \end{array}$

5. A small amount of iodine makes the reaction even more dramatic by producing purple smoke. The powdered zinc must be fresh and should not be allowed to oxidize in air.

B. Student Experiments

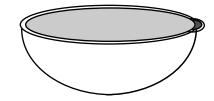
- 1. Methylene blue is reduced by a basic glucose solution and appears colorless. Shaking the flask allows air (oxygen) to temporarily oxidize the indicator which then appears deep blue. Upon standing, the methylene blue is reduced and goes colorless. The solution will last several days.
- 2. The heat of solution for ammonium chloride is endothermic and the heat of solution for calcium chloride is exothermic.
- 3. Save the nail for the next step and discard the solution in the sink.
- 4. Additionally, it is fun to change a new penny into a "dime" by dropping it into mercury(II) nitrate solution.
- 5. Any two nonidentical mirror image molecular models will suffice to illustrate optical isomerism.

EXPERIMENT 1	NAME	
DATE	SECTION	

SELECT THE SINGLE BEST ANSWER FOR EACH OF THE FOLLOWING.

- 1. What is the term for the study of the composition and properties of matter?
 - (a) chemistry
 - (b) experiment
 - (c) philosophy
 - (d) science
 - (e) none of the above
- 2. What is the term for collecting data and recording observations under controlled conditions?
 - (a) chemistry
 - (b) experiment
 - (c) hypothesis
 - (d) science
 - (e) none of the above
- 3. What is the term for a tentative proposal of a scientific principle that attempts to explain the meaning of the data gathered in an experiment?
 - (a) explanation
 - (b) hypothesis
 - (c) natural law
 - (d) theory
 - (e) none of the above
- 4. What is the term for the methodical exploration of nature and logical explanation of the observations?
 - (a) alchemy
 - (b) chemistry
 - (c) experiment
 - (d) science
 - (e) none of the above
- 5. What is the term for an investigation that entails performing an experiment, proposing a hypothesis, testing the hypothesis, and stating a theory or law?
 - (a) alchemy
 - (b) chemistry
 - (c) science
 - (d) scientific method
 - (e) none of the above
- 6. What is the term for an extensively tested proposal of a scientific principle that offers a model to explain the behavior of nature?
 - (a) experiment
 - (b) hypothesis
 - (c) natural law
 - (d) theory
 - (e) none of the above

- 7. What is the name of the laboratory equipment shown in the diagram?
 - (a) beaker
 - (b) Erlenmeyer flask
 - (c) Florence flask
 - (d) volumetric flask
 - (e) wash bottle


- 8. What is the name of the laboratory equipment shown in the diagram?
 - (a) beaker
 - (b) Erlenmeyer flask
 - (c) Florence flask
 - (d) volumetric flask
 - (e) wash bottle

- 9. What is the name of the laboratory equipment shown in the diagram?
 - (a) casserole
 - (b) crucible
 - (c) evaporating dish
 - (d) glass disk
 - (e) watchglass

- 10. What is the name of the laboratory equipment shown in the diagram?
 - (a) casserole
 - (b) crucible
 - (c) evaporating dish
 - (d) mortar
 - (e) watchglass

- 11. Which of the following chemicals is potentially dangerous?
 - (a) ammonium nitrate
 - (b) ethyl alcohol
 - (c) nitric acid
 - (d) sodium hydroxide
 - (e) all chemicals are potentially dangerous
- 12. What should you do if a chemical is spilled on your skin?
 - (a) wash immediately with water
 - (b) ask another student for help
 - (c) ask the Instructor for help
 - (d) read the safety rules
 - (e) clean up the spill
- 13. What is the proper technique for detecting the odor of a vapor in a test tube?
 - (a) breathe deeply from the test tube
 - (b) use a match to detect a vapor
 - (c) waft the vapor toward your nose
 - (d) all of the above
 - (e) none of the above
- 14. Why must a burner never be ignited in the laboratory in the presence of an organic liquid such as acetone or alcohol?
 - (a) organic solids are toxic
 - (b) organic vapors are flammable
 - (c) organic liquids decompose
 - (d) all of the above
 - (e) none of the above

EXPER	RIMENT 1	NAME	SAMPLE DATA
DATE		SECTION	
DAIA	TABLE		
A.	Instructor Demonstrations		
	1. Cold Heat		
	Observation		Hypothesis
	 Light blue flame Handkerchief does not ignite 		 Alcohol is flammable Alcohol is more combustible than wet cloth
	2. Black Foam		
	Observation		Hypothesis
	 Black foam White smoke Gas with sharp odor 		 Carbon Water vapor and sugar dust Sulfur oxides
	3. Copper Smog		Waste
	Observation		Hypothesis
	 Brown gas Green solution Blue solution 		 Nitrogen oxides Copper is green in conc acid Copper is blue in dilute acid
	4. Here and Gone		
	Observation		Hypothesis
	• Blue-white solid particles form in solution	n	Blue-white solid is insoluble
	Particles disappear and solution change	es color	 Excess ammonia dissolves the solid particles
	5. Water Hazard Observation		Hypothesis
	 Sparks and flashes White smoke Yellow/white residue 		 Energy released Sulfur oxide gas Zinc compound formed

B. Student Experiments

1.	Disar	pearing	Blue
. .	Dibtip	peening	Divic

1. Disappearing blue	
Observation	Hypothesis
 Clear solution turns blue (upon shaking) Blue solution turns clear (after several seconds) 	 Reacts with oxygen in flask Oxygen in solution is used up
2. Hot and Cold	
Observation	Hypothesis
Ammonium Chloride – cold	 Dissolves, taking heat from surroundings
Calcium Chloride – hot	 Dissolves, evolving heat to environment
3. Active and Unreactive	
Observation	Hypothesis
Iron – no reaction	Iron is unreactive
Calcium – bubbles, white residue	 Calcium reacts to produce a gas and a white insoluble compound
4. Copper Nails	
Observation	Hypothesis

Nail turns to bronze .

5. Mirror Images

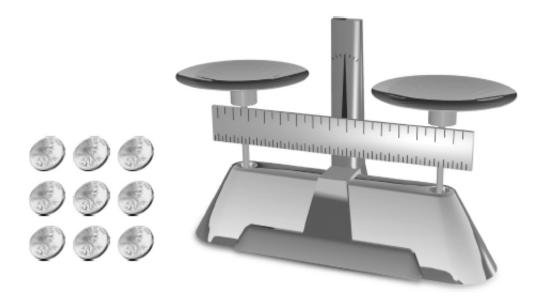
5. Murtor Images	
Observation	Hypothesis
Models are not superimposable	 Four different objects with a common center have a special symmetry

.

Copper is plated onto the iron nail

RECYCLE Chemical Waste

EXPERIMENT 1	NAME	ANSWER KEY
DATE	SECTION	


POSTLABORATORY ASSIGNMENT

1. State whether each of the following laboratory safety precautions is *true* or *false*.

(a)	true	Wear safety goggles in the laboratory.
(b)	true	Wear closed-toe shoes in the laboratory.
(c)	true	Do not bring food or drink into the laboratory.
(d)	true	Note the location of the fire extinguisher(s) in the laboratory.
(e)	true	Note the location of the first-aid equipment in the laboratory.
(f)	true	Do not perform unauthorized experiments.
(g)	true	Waft a gas toward your nose when detecting an odor.
(h)	true	Perform experiments that produce a gas under a fume hood.
(i)	true	When heating a test tube, point the open end in a safe direction.
(j)	true	Always pour an acid into water-not water into acid.
(k)	true	Clean up broken glass immediately.
(1)	true	Do not use an organic liquid near an open flame in the laboratory.
(m)	true	If you contact a chemical, wash with water and notify the Instructor.
(n)	true	Notify the Instructor immediately in the event of an accident.

- 2. Which of the following chemicals should be handled carefully in the laboratory?
 - (a) acids *handle all chemicals carefully*
 - (b) bases *handle all chemicals carefully*
 - (c) alcohol *handle all chemicals carefully*
 - (d) distilled water handle all chemicals carefully

3. (optional) You are given nine pennies. One penny was minted in 1980 and the other eight pennies were minted after 1982. The 1980 penny weighs 3.0 grams; the other pennies have less copper and weigh only 2.5 grams. Assuming the mint dates are illegible, devise a method using the balance shown to determine the heavier 1980 penny in only two trials.

<u>Weighing 1:</u> Place three coins on each balance pan. If a pan drops, it indicates the heavier penny. This observation allows us to identify the set-of-three coins that contains the heavy penny.

<u>Weighing 2:</u> Place one penny on each pan from the set-of-three coins found to contain the heavy penny. The balance will indicate the heavy penny unless it is the penny that is not on a pan.