
1

Matrix Analysis

Exercises 1.3.3

1(a) Yes, as the three vectors are linearly independent and span three-
dimensional space.

1(b) No, since they are linearly dependent

⎡
⎣ 3

2
5

⎤
⎦ − 2

⎡
⎣ 1

0
1

⎤
⎦ =

⎡
⎣ 1

2
3

⎤
⎦

1(c) No, do not span three-dimensional space. Note, they are also linearly
dependent.

2 Transformation matrix is

A =
1√
2

⎡
⎣ 1 1 0

1 −1 0
0 0

√
2

⎤
⎦

⎡
⎣ 1 0 0

0 1 0
0 0 1

⎤
⎦ =

⎡
⎣

1√
2

1√
2

0
1√
2

− 1√
2

0
0 0 1

⎤
⎦

Rotates the (e1, e2) plane through π/4 radians about the e3 axis.

3 By checking axioms (a)–(h) on p. 10 it is readily shown that all cubics
ax3 + bx2 + cx + d form a vector space. Note that the space is four dimensional.

3(a) All cubics can be written in the form

ax3 + bx2 + cx + d

and {1, x, x2, x3} are a linearly independent set spanning four-dimensional space.
Thus, it is an appropriate basis.
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3(b) No, does not span the required four-dimensional space. Thus a general
cubic cannot be written as a linear combination of

(1 − x), (1 + x), (1 − x3), (1 + x3)

as no term in x2 is present.

3(c) Yes as linearly independent set spanning the four-dimensional space

a(1 − x) + b(1 + x) + c(x2 − x3) + d(x2 + x3)

= (a + b) + (b − a)x + (c + a)x2 + (d − c)x3

≡ α + βx + γx2 + δx3

3(d) Yes as a linear independent set spanning the four-dimensional space

a(x − x2) + b(x + x2) + c(1 − x3) + d(1 + x3)

= (a + b) + (b − a)x + (c + d)x2 + (d − c)x3

≡ α + βx + γx2 + δx3

3(e) No not linearly independent set as

(4x3 + 1) = (3x2 + 4x3) − (3x2 + 2x) + (1 + 2x)

4 x + 2x3, 2x − 3x5, x + x3 form a linearly independent set and form a basis
for all polynomials of the form α + βx3 + γx5 . Thus, S is the space of all odd
quadratic polynomials. It has dimension 3.
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Exercises 1.4.3

5(a) Characteristic polynomial is λ3 − p1λ
2 − p2λ − p3 with

p1 = trace A = 12

B1 = A− 12I =

⎡
⎣−9 2 1

4 −7 −1
2 3 −8

⎤
⎦

A2 = A B1 =

⎡
⎣−17 −5 −7
−18 −30 7

2 −5 −33

⎤
⎦

p2 =
1
2

trace A2 = −40

B2 = A2 + 40I =

⎡
⎣ 23 −5 −7
−18 10 7

2 −5 7

⎤
⎦

A3 = A B2 =

⎡
⎣ 35 0 0

0 35 0
0 0 35

⎤
⎦

p3 =
1
3

trace A3 = 35

Thus, characteristic polynomial is

λ3 − 12λ2 + 40λ − 35

Note that B3 = A3 − 35I = 0 confirming check.

5(b) Characteristic polynomial is λ4 − p1λ
3 − p2λ

2 − p3λ − p4 with
p1 = trace A = 4

B1 = A− 4I =

⎡
⎢⎣
−2 −1 1 2

0 −3 1 0
−1 1 −3 1

1 1 1 −4

⎤
⎥⎦

A2 = A B1 =

⎡
⎢⎣
−3 4 0 −3
−1 −2 −2 1

2 0 −2 −5
−3 −3 −1 3

⎤
⎥⎦ ⇒ p2 =

1
2

trace A2 = −2
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B2 = A2 + 2I =

⎡
⎢⎣
−1 4 0 −3
−1 0 −2 1
2 0 0 −5

−3 −3 −1 5

⎤
⎥⎦

A3 = A B2 =

⎡
⎢⎣
−5 2 0 −2

1 0 −2 −4
−1 −7 −3 4

0 4 −2 −7

⎤
⎥⎦ ⇒ p3 =

1
3

trace A3 = −5

B3 = A3 + 5I =

⎡
⎢⎣

0 0 0 −2
1 5 −2 −4

−1 −8 2 4
0 4 −2 −2

⎤
⎥⎦

A4 = A B3 =

⎡
⎢⎣
−2 0 0 0

0 −2 0 0
0 0 −2 0
0 0 0 −2

⎤
⎥⎦ ⇒ p4 =

1
4
trace A4 = −2

Thus, characteristic polynomial is λ4 − 4λ3 + 2λ2 + 5λ + 2

Note that B4 = A4 + 2I = 0 as required by check.

6(a) Eigenvalues given by
∣∣1−λ

1
1

1−λ

∣∣ = λ2 − 2λ = λ(λ − 2) = 0

so eigenvectors are λ1 = 2, λ2 = 0

Eigenvectors given by corresponding solutions of

(1 − λi)ei1 + ei2 = 0

ei1 + (1 − λi)ei2 = 0

Taking i = 1, 2 gives the eigenvectors as

e1 = [1 1]T , e2 = [1 − 1]T (1)

6(b) Eigenvalues given by
∣∣1−λ

3
2

2−λ

∣∣ = λ2 − 3λ − 4 = (λ + 1)(λ − 4) = 0

so eigenvectors are λ1 = 4, λ2 = −1

Eigenvectors given by corresponding solutions of

(l − λi)ei1 + 2ei2 = 0

3ei1 + (2 − λi)ei2 = 0
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Taking i = 1, 2 gives the eigenvectors as

e1 = [2 3]T , e2 = [1 − 1]T

6(c) Eigenvalues given by∣∣∣∣∣∣
1 − λ 0 −4

0 5 − λ 4
−4 4 3 − λ

∣∣∣∣∣∣ = λ3 + 9λ2 + 9λ − 81 = (λ − 9)(λ − 3)(λ + 3) = 0

So the eigenvalues are λ1 = 9, λ2 = 3, λ3 = −3.
The eigenvectors are given by the corresponding solutions of

(1 − λi)ei1 + 0ei2 − 4ei3 = 0

0ei1 + (5 − λi)ei2 + 4ei3 = 0

−4ei1 + 4ei2 + (3 − λi)ei3 = 0

Taking i = 1, λi = 9 solution is

e11

8
= −e12

16
=

e13

−16
= β1 ⇒ e1 = [−1 2 2]T

Taking i = 2, λi = 3 solution is

e21

−16
= −e22

16
=

e23

8
= β2 ⇒ e2 = [2 2 − 1]T

Taking i = 3, λi = −3 solution is

e31

32
= −e32

16
=

e33

32
= β3 ⇒ e3 = [2 − 1 2]T

6(d) Eigenvalues given by∣∣∣∣∣∣
1 − λ 1 2

0 2 − λ 2
−1 1 3 − λ

∣∣∣∣∣∣ = 0

Adding column 1 to column 2 gives∣∣∣∣∣∣
1 − λ 2 − λ 2

0 2 − λ 2
−1 0 3 − λ

∣∣∣∣∣∣ = (2 − λ)

∣∣∣∣∣∣
1 − λ 1 2

0 1 2
−1 0 3 − λ

∣∣∣∣∣∣
R1−R2(2 − λ)

∣∣∣∣∣∣
1 − λ 0 0

0 1 2
−1 0 3 − λ

∣∣∣∣∣∣ = (2 − λ)(1 − λ)(3 − λ)
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so the eigenvalues are λ1 = 3, λ2 = 2, λ3 = 1.

Eigenvectors are the corresponding solutions of (A− λiI)ei = 0

When λ = λ1 = 3 we have

⎡
⎣−2 1 2

0 −1 2
−1 1 0

⎤
⎦

⎡
⎣ e11

e12

e13

⎤
⎦ = 0

leading to the solution
e11

−2
= −e12

2
=

e13

−1
= β1

so the eigenvector corresponding to λ2 = 3 is e1 = β1[2 2 1]T , β1 constant.

When λ = λ2 = 2 we have

⎡
⎣−1 1 2

0 0 2
−1 1 1

⎤
⎦

⎡
⎣ e21

e22

e23

⎤
⎦ = 0

leading to the solution
e21

−2
= −e22

2
=

e23

0
= β3

so the eigenvector corresponding to λ2 = 2 is e2 = β2[1 1 0]T , β2 constant.

When λ = λ3 = 1 we have

⎡
⎣ 0 1 2

0 1 2
−1 1 2

⎤
⎦

⎡
⎣ e31

e32

e33

⎤
⎦ = 0

leading to the solution
e31

0
= −e32

2
=

e33

1
= β1

so the eigenvector corresponding to λ3 = 1 is e3 = β3[0 − 2 1]T , β3 constant.

6(e) Eigenvalues given by

∣∣∣∣∣∣
5 − λ 0 6

0 11 − λ 6
6 6 −2 − λ

∣∣∣∣∣∣ = λ3 − 14λ2 − 23λ − 686 = (λ − 14)(λ − 7)(λ + 7) = 0

so eigenvalues are λ1 = 14, λ2 = 7, λ3 = −7
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Eigenvectors are given by the corresponding solutions of

(5 − λi)ei1 + 0ei2 + 6ei3 = 0

0ei1 + (11 − λi)ei2 + 6ei3 = 0

6ei1 + 6ei2 + (−2 − λi)ei3 = 0

When i = 1, λ1 = 14 solution is

e11

12
=

−e12

−36
=

e13

18
= β1 ⇒ e1 = [2 6 3]T

When i = 2, λ2 = 7 solution is

e21

−72
=

−e22

−36
=

e23

−24
= β2 ⇒ e2 = [6 − 3 2]T

When i = 3, λ3 = −7 solution is

e31

54
=

−e32

−36
=

e33

−108
= β3 ⇒ e3 = [3 2 − 6]T

6(f) Eigenvalues given by

∣∣∣∣∣∣
1 − λ −1 0

1 2 − λ 1
−2 1 −1 − λ

∣∣∣∣∣∣ R1+R2

∣∣∣∣∣∣
−1 − λ 0 −1 − λ

1 2 − λ 1
−2 1 −1 − λ

∣∣∣∣∣∣
= (1 + λ)

∣∣∣∣∣∣
−1 0 0
1 2 − λ 0

−2 1 1 − λ

∣∣∣∣∣∣ = 0, i.e. (1 + λ)(2 − λ)(1 − λ) = 0

so eigenvalues are λ1 = 2, λ2 = 1, λ3 = −1
Eigenvectors are given by the corresponding solutions of

(1 − λi)ei1 − ei2 + 0ei3 = 0

ei1 + (2 − λi)ei2 + ei3 = 0

−2ei1 + ei2 − (1 + λi)ei3 = 0

Taking i = 1, 2, 3 gives the eigenvectors as

e1 = [−1 1 1]T , e2 = [1 0 − 1]T , e3 = [1 2 − 7]T
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6(g) Eigenvalues given by

∣∣∣∣∣∣
4 − λ 1 1

2 5 − λ 4
−1 −1 −λ

∣∣∣∣∣∣ R1 + (R2 + R3)

∣∣∣∣∣∣
5 − λ 5 − λ 5 − λ

2 5 − λ 4
−1 −1 −λ

∣∣∣∣∣∣
= (5 − λ)

∣∣∣∣∣∣
1 0 0
2 3 − λ 2
−1 0 1 − λ

∣∣∣∣∣∣ = (5 − λ)(3 − λ)(1 − λ) = 0

so eigenvalues are λ1 = 5, λ2 = 3, λ3 = 1

Eigenvectors are given by the corresponding solutions of

(4 − λi)ei1 + ei2 + ei3 = 0

2ei1 + (5 − λi)ei2 + 4ei3 = 0

−ei1 − ei2 − λiei3 = 0

Taking i = 1, 2, 3 and solving gives the eigenvectors as

e1 = [2 3 − 1]T , e2 = [1 − 1 0]T , e3 = [0 − 1 1]T

6(h) Eigenvalues given by

∣∣∣∣∣∣
1 − λ −4 −2

0 3 − λ 1
1 2 4 − λ

∣∣∣∣∣∣ R1+2R2

∣∣∣∣∣∣
1 − λ 2 − 2λ 0

0 3 − λ 1
1 2 4 − λ

∣∣∣∣∣∣
= (1 − λ)

∣∣∣∣∣∣
1 0 0
0 3 − λ 1
1 0 4 − λ

∣∣∣∣∣∣ = (1 − λ)(3 − λ)(4 − λ) = 0

so eigenvalues are λ1 = 4, λ2 = 3, λ3 = 1

Eigenvectors are given by the corresponding solutions of

(1 − λi)ei1 − 4ei2 − 2ei3 = 0

2ei1 + (3 − λi)ei2 + ei3 = 0

ei1 + 2ei2 + (4 − λi)ei3 = 0
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Taking i = 1, 2, 3 and solving gives the eigenvectors as

e1 = [2 − 1 − 1]T , e2 = [2 − 1 0]T , e3 = [4 − 1 − 2]T

Exercises 1.4.5

7(a) Eigenvalues given by

∣∣∣∣∣∣
2 − λ 2 1

1 3 − λ 1
1 2 2 − λ

∣∣∣∣∣∣ R1−R2

∣∣∣∣∣∣
1 − λ −1 + λ 0

0 3 − λ 1
1 2 2 − λ

∣∣∣∣∣∣
= (1 − λ)

∣∣∣∣∣∣
1 0 0
1 4 − λ 1
1 3 2 − λ

∣∣∣∣∣∣ = (1 − λ)[λ2 − 6λ + 5] = (1 − λ)(λ − 1)(λ − 5) = 0

so eigenvalues are λ1 = 5, λ2 = λ3 = 1

The eigenvectors are the corresponding solutions of

(2 − λi)ei1 + 2ei2 + ei3 = 0

ei1 + (3 − λi)ei2 + ei3 = 0

ei1 + 2ei2 + (2 − λi)ei3 = 0

When i = 1, λ1 = 5 and solution is

e11

4
=

−e12

−4
=

e13

4
= β1 ⇒ e1 = [1 1 1]T

When λ2 = λ3 = 1 solution is given by the single equation

e21 + 2e22 + e23 = 0

Following the procedure of Example 1.6 we can obtain two linearly independent
solutions. A possible pair are

e2 = [0 1 2]T , e3 = [1 0 − 1]T
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7(b) Eigenvalues given by

∣∣∣∣∣∣
−λ −2 −2
−1 1 − λ 2
−1 −1 2 − λ

∣∣∣∣∣∣ = −λ3 + 3λ2 − 4 = −(λ + 1)(λ − 2)2 = 0

so eigenvalues are λ1 = λ2 = 2, λ3 = −1
The eigenvectors are the corresponding solutions of

−λiei1 − 2ei2 − 2ei3 = 0

−ei1 + (1 − λi)ei2 + 2ei3 = 0

−ei1 − ei2 + (2 − λi)ei3 = 0

When i = 3, λ3 = −1 corresponding solution is

e31

8
=

−e32

−1
=

e33

3
= β3 ⇒ e3 = [8 1 3]T

When λ1 = λ2 = 2 solution is given by

−2e21 − 2e22 − 2e23 = 0 (1)

−e21 − e22 + 2e23 = 0 (2)

−e21 − e22 = 0 (3)

From (1) and (2) e23 = 0 and it follows from (3) that e21 = −e22 . We deduce that
there is only one linearly independent eigenvector corresponding to the repeated
eigenvalues λ = 2. A possible eigenvector is

e2 = [1 − 1 0]T

7(c) Eigenvalues given by

∣∣∣∣∣∣
4 − λ 6 6

1 3 − λ 2
−1 −5 −2 − λ

∣∣∣∣∣∣ R1−3R3

∣∣∣∣∣∣
1 − λ −3 + 3λ 0

1 3 − λ 2
−1 −5 −2 − λ

∣∣∣∣∣∣
= (1 − λ)

∣∣∣∣∣∣
1 −3 0
1 3 − λ 2

−1 −5 −2 − λ

∣∣∣∣∣∣ = (1 − λ)

∣∣∣∣∣∣
1 0 0
1 6 − λ 2
1 −8 −2 − λ

∣∣∣∣∣∣
= (1 − λ)(λ2 + λ + 4) = (1 − λ)(λ − 2)2 = 0
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so eigenvalues are λ1 = λ2 = 2, λ3 = 1.
The eigenvectors are the corresponding solutions of

(4 − λi)ei1 + 6ei2 + 6ei3 = 0

ei1 + (3 − λi)ei2 + 2ei3 = 0

−ei1 − 5ei2 − (2 + λi)ei3 = 0

When i = 3, λ3 = 1 corresponding solution is

e31

4
=

−e32

−1
=

e33

−3
= β3 ⇒ e3 = [4 1 − 3]T

When λ1 = λ2 = 2 solution is given by

2e21 + 6e22 + 6e23 = 0

e21 + e22 + 2e23 = 0

−e21 − 5e22 − 4e23 = 0

so that
e21

6
=

−e22

−2
=

e23

−4
= β2

leading to only one linearly eigenvector corresponding to the eigenvector λ = 2. A
possible eigenvector is

e2 = [3 1 − 2]T

7(d) Eigenvalues given by∣∣∣∣∣∣
7 − λ −2 −4

3 −λ −2
6 −2 −3 − λ

∣∣∣∣∣∣ R1−2R2

∣∣∣∣∣∣
1 − λ −2 + 2λ 0

3 −λ −2
6 −2 −3 − λ

∣∣∣∣∣∣
= (1 − λ)

∣∣∣∣∣∣
1 −2 0
3 −λ −2
6 −2 −3 − λ

∣∣∣∣∣∣ = (1 − λ)

∣∣∣∣∣∣
1 0 0
3 6 − λ −2
6 10 −3 − λ

∣∣∣∣∣∣
= (1 − λ)(λ − 2)(λ − 1) = 0

so eigenvalues are λ1 = 2, λ2 = λ3 = 1.
The eigenvectors are the corresponding solutions of

(7 − λi)ei1 − 2ei2 − 4ei3 = 0

3ei1 − λiei2 − 2ei3 = 0

6ei1 − 2ei2 − (3 + λi)ei3 = 0
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When i = 1, λ2 = 2 and solution is

e11

6
=

−e12

−3
=

e13

6
= β1 ⇒ e1 = [2 1 2]T

When λ2 = λ3 = 1 the solution is given by the single equation

3e21 − e22 − 2e23 = 0

Following the procedures of Example 1.6 we can obtain two linearly independent
solutions. A possible pair are

e2 = [0 2 − 1]T , e3 = [2 0 3]T

8

(A− I) =

⎡
⎣−4 −7 −5

2 3 3
1 2 1

⎤
⎦

Performing a series of row and column operators this may be reduced to the form⎡
⎣ 0 0 0

0 0 1
1 0 0

⎤
⎦ indicating that (A − I) is of rank 2. Thus, the nullity q = 3 − 2 = 1

confirming that there is only one linearly independent eigenvector associated with
the eigenvalue λ = 1. The eigenvector is given by the solution of

−4e11 − 7e12 − 5e13 = 0

2e11 + 3e12 + 3e13 = 0

e11 + 2e12 + e13 = 0

giving
e11

−3
=

−e12

−1
=

e13

1
= β1 ⇒ e1 = [−3 1 1]T

9

(A− I) =

⎡
⎣ 1 1 −1
−1 −1 1
−1 −1 1

⎤
⎦
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Performing a series of row and column operators this may be reduced to the form⎡
⎣ 1 0 0

0 0 0
0 0 0

⎤
⎦ indicating that (A−I) is of rank 1. Then, the nullity of q = 3−1 = 2

confirming that there are two linearly independent eigenvectors associated with the
eigenvalue λ = 1. The eigenvectors are given by the single equation

e11 + e12 − e13 = 0

and two possible linearly independent eigenvectors are

e1 = [1 0 1]T and e2 = [0 1 1]T

Exercises 1.4.8

10 These are standard results.

11(a) (i) Trace A = 4 + 5 + 0 = 9 = sum eigenvalues;

(ii) detA = 15 = 5 × 3 × 1 = product eigenvalues;

(iii) A−1 =
1
15

⎡
⎣ 4 −1 −1
−4 1 −14

3 3 18

⎤
⎦ . Eigenvalues given by

∣∣∣∣∣∣
4 − 15λ −1 −1

−4 1 − 15λ −14
3 3 18 − 15λ

∣∣∣∣∣∣ C3−C2

∣∣∣∣∣∣
4 − 15λ −1 0

−4 1 − 15λ −15 + 15λ
3 3 15 − 15λ

∣∣∣∣∣∣
= (15 − 15λ)

∣∣∣∣∣∣
4 − 15λ −1 0

−4 1 − 15λ −1
3 3 1

∣∣∣∣∣∣ = (15 − 15λ)(15λ − 5)(15λ − 3) = 0

confirming eigenvalues as 1, 1
3 , 1

5 .
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(iv) AT =

⎡
⎣ 4 2 −1

1 5 −1
1 4 0

⎤
⎦ having eigenvalues given by

∣∣∣∣∣∣
4 − λ 2 −1

1 5 − λ −1
1 4 −λ

∣∣∣∣∣∣ = (λ − 5)(λ − 3)(λ − 1) = 0

that is, eigenvalue as for A .

11(b) (i) 2A =

⎡
⎣ 8 2 2

4 10 8
−2 −2 0

⎤
⎦ having eigenvalues given by

∣∣∣∣∣∣
8 − λ 2 2

4 10 − λ 8
−2 −2 −λ

∣∣∣∣∣∣ C1−C2

∣∣∣∣∣∣
6 − λ 2 2
−6 + λ 10 − λ 8

0 −2 −λ

∣∣∣∣∣∣
= (6 − λ)

∣∣∣∣∣∣
1 2 2
−1 10 − λ 8
0 −2 −λ

∣∣∣∣∣∣ = (6 − λ)

∣∣∣∣∣∣
1 2 2
0 12 − λ 10
0 −2 −λ

∣∣∣∣∣∣
= (6 − λ)(λ − 10)(λ − 2) = 0

Thus eigenvalues are 2 times those of A ; namely 6, 10 and 2.

(ii) A + 2I =

⎡
⎣ 6 1 1

2 7 4
−1 −1 2

⎤
⎦ having eigenvalues given by

∣∣∣∣∣∣
6 − λ 1 1

2 7 − λ 4
−1 −1 2 − λ

∣∣∣∣∣∣ = −λ3 + 15λ2 − 71λ + 105 = −(λ − 7)(λ − 5)(λ − 3) = 0

confirming the eigenvalues as 5 + 2, 3 + 2, 1 + 2.

Likewise for A − 2I
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(iii) A2 =

⎡
⎣ 17 8 8

14 23 22
−6 −6 −5

⎤
⎦ having eigenvalues given by

∣∣∣∣∣∣
17 − λ 8 8

14 23 − λ 22 − λ
−6 −6 −5 − λ

∣∣∣∣∣∣ R1 + (R2) + R3)

∣∣∣∣∣∣
25 − λ 25 − λ 25 − λ

14 23 − λ 22
−6 −6 −5 − λ

∣∣∣∣∣∣
= (25 − λ)

∣∣∣∣∣∣
1 0 0
14 9 − λ 8
−6 0 1 − λ

∣∣∣∣∣∣ = (25 − λ)(9 − λ)(1 − λ) = 0

that is, eigenvalues A2 are 25, 9, 1 which are those of A squared.

12 Eigenvalues of A given by

∣∣∣∣∣∣
−3 − λ −3 −3
−3 1 − λ −1
−3 −1 1 − λ

∣∣∣∣∣∣ R3+R2

∣∣∣∣∣∣
−3 − λ −3 −3
−3 1 − λ −1
0 −2 + λ 2 − λ

∣∣∣∣∣∣
= (λ − 2)

∣∣∣∣∣∣
−3 − λ −3 −3
−3 1 − λ −1

0 1 −1

∣∣∣∣∣∣ C3+C2(λ − 2)

∣∣∣∣∣∣
−3 − λ −3 −6
−3 (1 − λ) −λ
0 1 0

∣∣∣∣∣∣
= −(λ − 2)(λ + 6)(λ − 3) = 0

so eigenvalues are λ1 = −6, λ2 = 3, λ3 = 2

Eigenvectors are given by corresponding solutions of

(−3 − λi)ei1 − 3ei2 − 3ei3 = 0

−3ei1 + (1 − λi)ei2 − ei3 = 0

−3ei1 − ei2 + (1 − λi)ei3 = 0

Taking i = 1, 2, 3 gives the eigenvectors as

e1 = [2 1 1]T , e2 = [−1 1 1]T , e3 = [0 1 − 1]T

It is readily shown that

eT
1 e2 = eT

1 e3 = eT
2 e3 = 0

so that the eigenvectors are mutually orthogonal.
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13 Let the eigenvector be e = [a b c]T then since the three vectors are mutually
orthogonal

a + b − 2c = 0

a + b − c = 0

giving c = 0 and a = −b so an eigenvector corresponding to λ = 2 is e = [1 −1 0]T .

Exercises 1.5.3

14 Taking x(0) = [1 1 1]T iterations may then be tabulated as follows:

Iteration k 0 1 2 3 4
1 0.9 0.874 0.869 0.868

x(k) 1 1 1 1 1
1 0.5 0.494 0.493 0.492
9 7.6 7.484 7.461 7.457

A x(k) 10 8.7 8.61 8.592 8.589
5 4.3 4.242 4.231 4.228

λ � 10 8.7 8.61 8.592 8.589

Thus, estimate of dominant eigenvalue is λ � 8.59 and corresponding eigenvector
x � [0.869 1 0.493]T or x � [0.61 0.71 0.35]T in normalised form.

15(a) Taking x(0) = [1 1 1]T iterations may then be tabulated as follows:

Iteration k 0 1 2 3 4 5 6
1 0.75 0.667 0.636 0.625 0.620 0.619

x(k) 1 1 1 1 1 1 1
1 1 1 1 1 1 1
3 2.5 2.334 2.272 2.250 2.240

A x(k) 4 3.75 3.667 3.636 3.625 3.620
4 3.75 3.667 3.636 3.625 3.620

λ � 4 3.75 3.667 3.636 3.625 3.620

Thus, correct to two decimal places dominant eigenvalue is 3.62 having
corresponding eigenvectors [0.62 1 1]T .
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15(b) Taking x(0) = [1 1 1]T iterations may be tabulated as follows:

Iteration k 0 1 2 3 4 5
1 0.364 0.277 0.257 0.252 0.251

x(k) 1 0.545 0.506 0.501 0.493 0.499
1 1 1 1 1 1
4 2.092 1.831 1.771 1.756

A x(k) 6 3.818 3.566 3.561 3.49
11 7.546 7.12 7.03 6.994

λ � 11 7.546 7.12 7.03 6.994

Thus, correct to two decimal places dominant eigenvalue is 7 having corresponding
eigenvector [0.25 0.5 1]T .

15(c) Taking x(0) = [1 1 1 1]T iterations may then be tabulated as follows:

Iteration k 0 1 2 3 4 5 6
1 1 1 1 1 1 1

x(k) 1 0 −0.5 −0.6 −0.615 −0.618 − 0.618
1 1 −0.5 −0.6 −0.615 −0.618 −0.618
1 1 1 1 1 1 1
1 2 2.5 2.6 2.615 2.618

A x(k) 0 −1 −1.5 −1.6 −1.615 −1.618
0 −1 −1.5 −1.6 −1.615 −1.618
1 2 2.5 2.6 2.615 2.618

λ � 1 2 2.5 2.6 2.615 2.618

Thus, correct to two decimal places dominant eigenvalue is 2.62 having
corresponding eigenvector [1 − 0.62 − 0.62 1]T .

16 The eigenvalue λ1 corresponding to the dominant eigenvector e1 = [1 1 2]T

is such that A e1 = λ1e1 so

⎡
⎣ 3 1 1

1 3 1
1 1 5

⎤
⎦

⎡
⎣ 1

1
2

⎤
⎦ = λ1

⎡
⎣ 1

1
2

⎤
⎦

so λ1 = 6.
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Then

A1 = A− 6ê1êT
1 where ê1 =

[ 1√
6

1√
6

2√
6

]T

so

A1 =

⎡
⎣ 3 1 1

1 3 1
1 1 5

⎤
⎦ −

⎡
⎣ 1 1 2

1 1 2
2 2 4

⎤
⎦ =

⎡
⎣ 2 0 −1

0 2 −1
−1 −1 1

⎤
⎦

Applying the power method with x(0) = [1 1 1]T

y(1) = A1x(0) =

⎡
⎣ 1

1
−1

⎤
⎦ = x(1)

y(2) = A1x(1) =

⎡
⎣ 3

3
−3

⎤
⎦ = 3

⎡
⎣ 1

1
−1

⎤
⎦

Clearly, λ2 = 3 and ê2 =
1√
3
[1 1 − 1]T .

Repeating the process

A2 = A1 − λ2ê2êT
2 =

⎡
⎣ 2 0 −1

0 2 −1
−1 −1 1

⎤
⎦ −

⎡
⎣ 1 1 −1

1 1 −1
−1 −1 1

⎤
⎦ =

⎡
⎣ 1 −1 0
−1 1 0

0 0 0

⎤
⎦

Taking x(0) = [1 − 1 0]T the power method applied to A2 gives

y(1) = A2x(0) =

⎡
⎣ 2
−2

0

⎤
⎦ = 2

⎡
⎣ 1
−1

0

⎤
⎦

and clearly, λ3 = 2 with ê3 =
1√
2
[1 − 1 0]T .

17 The three Gerschgorin circles are

| λ − 5 |= 2, | λ |= 2, | λ + 5 |= 2
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which are three non-intersecting circles. Since the given matrix A is symmetric its
three eigenvalues are real and it follows from Theorem 1.2 that

3 < λ1 < 7 , −2 < λ2 < 2 , −7 < λ3 < 7

(i.e., an eigenvalue lies within each of the three circles).

18 The characteristic equation of the matrix A is

∣∣∣∣∣∣
10 − λ −1 0
−1 2 − λ 2

0 2 3 − λ

∣∣∣∣∣∣ = 0

that is (10 − λ)[(2 − λ)(3 − λ) − 4] − (3 − λ) = 0

or f(λ) = λ3 − 15λ2 + 51λ − 17 = 0

Taking λ0 = 10 as the starting value the Newton–Raphson iterative process
produces the following table:

i λi f(λi) f′(λi) − f(λi)
f′(λi)

0 10 7 −51.00 0.13725
1 10.13725 −0.28490 −55.1740 −0.00516
2 10.13209 −0.00041 −55.0149 −0.000007

Thus to three decimal places the largest eigenvalue is λ = 10.132

Using Properties 1.1 and 1.2 of section 1.4.6 we have

3∑
i=1

λi = trace A = 15 and
3∏

i=1

λi =| A |= 17
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Thus,
λ2 + λ3 = 15 − 10.132 = 4.868

λ2λ3 = 1.67785

so λ2(4.868 − λ2) = 1.67785

λ2
2 − 4.868λ2 + 1.67785 = 0

λ2 = 2.434 ± 2.0607

that is λ2 = 4.491 and λ3 = 0.373

19(a) If e1, e2, . . . , en are the corresponding eigenvectors to λ1, λ2, . . . , λn then
(KI−A)ei = (K−λi)ei so that A and (KI−A) have the same eigenvectors and
eigenvalues differ by K .

Taking x(o) =
n∑

i=1

αrei then

x(p) = (KI− A)x(p−1) = (KI − A)2x(p−2) = . . . =
n∑

r=1

αr(K − λr)per

Now K − λn > K − λn−1 > . . . > K − λ1 and

x(p) = αn(K − λn)pen +
n∑

r=1

αr(K − λr)per

= (K − λn)p[αnen +
n−1∑
r=1

αr

[ K − λr

K − λn

]p

er]

→ (K − λn)pαnen = Ken as p → ∞

Also
x

(p+1)
i

x
(p)
i

→ (K − λn)p+1

(K − λn)p

αnen

αnen
= K − λn

Hence, we can find λn

19(b) Since A is a symmetric matrix its eigenvalues are real. By Gerschgorin’s
theorem the eigenvalues lie in the union of the intervals

| λ − 2 |≤ 1, | λ − 2 |≤ 2, | λ − 2 |≤ 1

i.e. | λ − 2 |≤ 2 or 0 ≤ λ ≤ 4.
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Taking K = 4 in (a)

KI − A = 4I − A =

⎡
⎣ 2 1 0

1 2 1
0 1 2

⎤
⎦

Taking x(0) = [1 1 1]T iterations using the power method are tabulated as follows:

Iteration k 0 1 2 3 4 5
1 0.75 0.714 0.708 0.707 0.707

x(k) 1 1 1 1 1 1
1 0.75 0.714 0.708 0.707 0.707
3 2.5 2.428 2.416 2.414

A x(k) 4 3.5 3.428 3.416 3.414
3 2.5 2.428 2.416 2.414

λ � 4 3.5 3.428 3.416 3.414

Thus λ3 = 4 − 3.41 = 0.59 correct to two decimal places.

Exercises 1.6.3

20 Eigenvalues given by

Δ =

∣∣∣∣∣∣
−1 − λ 6 −12

0 −13 − λ 30
0 −9 20 − λ

∣∣∣∣∣∣ = 0

Now Δ = (−1 − λ)
∣∣∣∣−13 − λ 30

−9 20 − λ

∣∣∣∣ = (−1 − λ)(λ2 − 7λ + 10)

= (−1 − λ)(λ − 5)(λ − 2) so Δ = 0 gives λ1 = 5, λ2 = 2, λ3 = −1

Corresponding eigenvectors are given by the solutions of

(A− λiI)ei = 0

When λ = λ1 = 5 we have

⎡
⎣−6 6 −12

0 −18 30
0 −9 15

⎤
⎦

⎡
⎣ e11

e12

e13

⎤
⎦ = 0
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leading to the solution
e11

−36
=

−e12

−180
=

e13

108
= β1

so the eigenvector corresponding to λ1 = 5 is e1 = β1[1 − 5 − 3]T

When λ = λ2 = 2, we have⎡
⎣−3 6 −12

0 −15 30
0 −9 18

⎤
⎦

⎡
⎣ e21

e22

e23

⎤
⎦ = 0

leading to the solution
e21

0
=

−e22

−90
=

e23

45
= β2

so the eigenvector corresponding to λ2 = 2 is e2 = β2[0 2 1]T

When λ = λ3 = −1, we have⎡
⎣ 0 6 −12

0 −12 30
0 −9 21

⎤
⎦

⎡
⎣ e31

e32

e33

⎤
⎦ = 0

leading to the solution
e31

18
=

−e32

0
=

e33

0
= β3

so the eigenvector corresponding to λ3 = −1 is e3 = β3[1 0 0]T

A modal matrix M and spectral matrix Λ are

M =

⎡
⎣ 1 0 1
−5 2 0
−3 1 0

⎤
⎦ Λ =

⎡
⎣ 5 0 0

0 2 0
0 0 −1

⎤
⎦

M−1 =

⎡
⎣ 0 1 −2

0 3 −5
1 −1 2

⎤
⎦ and matrix multiplication confirms M−1A M = Λ

21 From Example 1.9 the eigenvalues and corresponding normalised eigenvectors
of A are

λ1 = 6, λ2 = 3, λ3 = 1

ê1 =
1√
5
[1 2 0]T , ê2 = [0 0 1]T , ê3 =

1√
5
[−2 1 0]T ,

M̂ =
1√
5

⎡
⎣ 1 0 −2

2 0 1
0

√
5 0

⎤
⎦
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M̂T A M =
1
5

⎡
⎣ 1 2 0

0 0
√

5
−2 1 0

⎤
⎦

⎡
⎣ 2 2 0

2 5 0
0 0 3

⎤
⎦

⎡
⎣ 1 0 −2

2 0 1
0

√
5 0

⎤
⎦

=
1
5

⎡
⎣ 6 12 0

0 0 3
√

5
−2 1 0

⎤
⎦

⎡
⎣ 1 0 −2

2 0 1
0

√
5 0

⎤
⎦

=
1
5

⎡
⎣ 30 0 0

0 15 0
0 0 5

⎤
⎦ =

⎡
⎣ 6 0 0

0 3 0
0 0 1

⎤
⎦ = Λ

22 The eigenvalues of A are given by

∣∣∣∣∣∣
5 − λ 10 8
10 2 − λ −2
8 −2 11 − λ

∣∣∣∣∣∣ = −(λ3−18λ2−81λ+1458) = −(λ−9)(λ+9)(λ−18) = 0

so eigenvalues are λ1 = 18, λ2 = 9, λ3 = −9

The eigenvectors are given by the corresponding solutions of

(5 − λi)ei1 + 10ei2 + 8ei3 = 0

10ei1 + (2 − λi)ei2 − 2ei3 = 0

8ei1 − 2ei2 + (11 − λi)ei3 = 0

Taking i = 1, 2, 3 and solving gives the eigenvectors as

e1 = [2 1 2]T , e2 = [1 2 − 2]T , e3 = [−2 2 1]T

Corresponding normalised eigenvectors are

ê1 =
1
3
[2 1 2]T , ê2 =

1
3
[1 2 − 2]T , ê3 =

1
3
[−2 2 1]T

M̂ =
1
3

⎡
⎣ 2 1 −2

1 2 2
2 −2 1

⎤
⎦ , M̂T =

1
3

⎡
⎣ 2 1 2

1 2 −2
−2 2 1

⎤
⎦
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M̂T A M =
1
9

⎡
⎣ 2 1 2

1 2 −2
−2 2 1

⎤
⎦

⎡
⎣ 5 10 8

10 2 −2
8 −2 11

⎤
⎦

⎡
⎣ 2 1 −2

1 2 2
2 −2 1

⎤
⎦

=
1
9

⎡
⎣ 36 18 36

9 18 −18
18 −18 −9

⎤
⎦

⎡
⎣ 2 1 −2

1 2 2
2 −2 1

⎤
⎦

=

⎡
⎣ 4 2 4

1 2 −2
2 −2 −1

⎤
⎦

⎡
⎣ 2 1 −2

1 2 2
2 −2 1

⎤
⎦

=

⎡
⎣ 18 0 0

0 9 0
0 0 −9

⎤
⎦ = Λ

23

A =

⎡
⎣ 1 1 −2
−1 2 1

0 1 −1

⎤
⎦

Eigenvalues given by

0 =

∣∣∣∣∣∣
1 − λ 1 −2
−1 2 − λ 1
0 1 −1 − λ

∣∣∣∣∣∣ = −(λ3 − 2λ2 −λ+2) = −(λ− 1)(λ− 2)(λ+1) = 0

so eigenvalues are λ1 = 2, λ2 = 1, λ3 = −1.
The eigenvectors are given by the corresponding solutions of

(1 − λi)ei1 + ei2 − 2ei3 = 0

−ei1 + (2 − λi)ei2 + ei3 = 0

0ei1 + ei2 − (1 + λi)ei3 = 0

Taking i = 1, 2, 3 and solving gives the eigenvectors as

e1 = [1 3 1]T , e2 = [3 2 1]T , e3 = [1 0 1]T

M =

⎡
⎣ 1 3 1

3 2 0
1 1 1

⎤
⎦ , Λ =

⎡
⎣ 2 0 0

0 1 0
0 0 −1

⎤
⎦

M−1 = −1
6

⎡
⎣ 2 −2 −2
−3 0 −3

1 2 −7

⎤
⎦
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Matrix multiplication then confirms

M−1 A M = Λ and A = M Λ M−1

24 Eigenvalues given by∣∣∣∣∣∣
3 − λ −2 4
−2 −2 − λ 6
4 6 −1 − λ

∣∣∣∣∣∣ = −λ3 + 63λ − 162 = −(λ + 9)(λ − 6)(λ − 3) = 0

so the eigenvalues are λ1 = −9, λ2 = 6, λ3 = 3. The eigenvectors are the
corresponding solutions of

(3 − λi)ei1 − 2ei2 + 44ei3 = 0

−2ei1 − (2 + λi)ei2 + 6ei3 = 0

4ei1 + 6ei2 − (1 + λi)ei3 = 0

Taking i = 1, 2, 3 and solving gives the eigenvectors as

e1 = [1 2 − 2]T , e2 = [2 1 2]T , e3 = [−2 2 1]T

Since eT
1 e2 = eT

1 e3 = eT
2 e3 = 0 the eigenvectors are orthogonal

L = [ê1 ê2 ê3] =
1
3

⎡
⎣ 1 2 −2

2 1 2
−2 2 1

⎤
⎦

L̂ A L =
1
9

⎡
⎣ 1 2 −2

2 1 2
−2 2 1

⎤
⎦

⎡
⎣ 3 −2 4
−2 −2 6

4 6 −1

⎤
⎦

⎡
⎣ 1 2 −2

2 1 2
−2 2 1

⎤
⎦

=
1
9

⎡
⎣−9 −18 18

12 6 12
−6 6 3

⎤
⎦

⎡
⎣ 1 2 −2

2 1 2
−2 2 1

⎤
⎦

=
1
9

⎡
⎣−81 0 0

0 54 0
0 0 27

⎤
⎦ =

⎡
⎣−9 0 0

0 6 0
0 0 3

⎤
⎦ = Λ

25 Since the matrix A is symmetric the eigenvectors

e1 = [1 2 0]T , e2 = [−2 1 0]T , e3 = [e31 e32 e33]T
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are orthogonal. Hence,

eT
1 e3 = e31 + 2e32 = 0 and eT

2 e3 = −2e31 + e32 = 0

Thus, e31 = e32 = 0 and e33 arbitrary so a possible eigenvector is e3 = [0 0 1]T .

Using A = M̂ Λ M̂T where Λ =

⎡
⎣ 6 0 0

0 1 0
0 0 3

⎤
⎦ gives

A =

⎡
⎣

1√
5

− 2√
5

0
2√
5

1√
5

0
0 0 1

⎤
⎦

⎡
⎣ 6 0 0

0 1 0
0 0 3

⎤
⎦

⎡
⎣

1√
5

2√
5

0
− 2√

5
1√
5

0
0 0 1

⎤
⎦

=

⎡
⎣ 2 2 0

2 5 0
0 0 3

⎤
⎦

26 A− I =

⎡
⎣−4 −7 −5

2 3 3
1 2 1

⎤
⎦ ∼

⎡
⎣ 0 0 0

0 −1 0
1 0 0

⎤
⎦ is of rank 2

Nullity (A− I) = 3 − 2 = 1 so there is only one linearly independent vector
corresponding to the eigenvalue 1. The corresponding eigenvector e1 is given by
the solution of (A− I)e1 = 0 or

−4e11 − 7e12 − 5e13 = 0

2e11 + 3e12 + 3e13 = 0

e11 + 2e12 + 212 = 0

that is, e1 = [−3 1 1]T . To obtain the generalised eigenvector e∗1 we solve

(A− I)e∗1 = e1 or⎡
⎣−4 −7 −5

2 3 3
1 2 1

⎤
⎦

⎡
⎣ e∗11

e∗12
e∗13

⎤
⎦ =

⎡
⎣−3

1
1

⎤
⎦

giving e∗1 = [−1 1 0]T . To obtain the second generalised eigenvector e∗∗1 we solve

(A− I)e∗∗1 = e∗1 or⎡
⎣−4 −7 −5

2 3 3
1 2 1

⎤
⎦

⎡
⎣ e∗∗11

e∗∗12
e∗∗13

⎤
⎦ =

⎡
⎣−1

1
0

⎤
⎦
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giving e∗∗1 = [2 − 1 0]T .

M = [e1 e∗1 e∗∗1 ] =

⎡
⎣−3 −1 2

1 1 −1
1 0 0

⎤
⎦

detM = −1 and M−1 = −

⎡
⎣ 0 0 −1
−1 −2 −1
−1 −1 −2

⎤
⎦ =

⎡
⎣ 0 0 1

1 2 1
1 1 2

⎤
⎦

Matrix multiplication then confirms

M−1 A M =

⎡
⎣ 1 1 0

0 1 1
0 0 1

⎤
⎦

27 Eigenvalues are given by

| A − λI |= 0

that is, λ4 − 4λ3 − 12λ2 + 32λ + 64 = (λ + 2)2(λ − 4)2 = 0 so the eigenvalues are
−2, −2, 4 and 4 as required.

Corresponding to the repeated eigenvalue λ1, λ2 = −2

(A + 2I) =

⎡
⎢⎣

3 0 0 −3
0 3 −3 0

−0.5 −3 3 0.5
−3 0 0 3

⎤
⎥⎦ ∼

⎡
⎢⎣

1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

⎤
⎥⎦ is of rank 2

Thus, nullity (A+2I) is 4−2 = 2 so there are two linearly independent eigenvectors
corresponding to λ = −2.

Corresponding to the repeated eigenvalues λ3, λ4 = 4

(A− 4I) =

⎡
⎢⎣

−3 0 0 −3
0 −3 −3 0

−0.5 −3 −3 0.5
−3 0 0 −3

⎤
⎥⎦ ∼

⎡
⎢⎣

1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 1

⎤
⎥⎦ is of rank 3

Thus, nullity (A − 4I) is 4 − 3 = 1 so there is only one linearly independent
eigenvector corresponding to λ = 4.
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When λ = λ1 = λ2 = −2 the eigenvalues are given by the solution of (A+2I)e = 0
giving e1 = [0 1 1 0]T , e2 = [1 0 0 1]T as two linearly independent solutions. When
λ = λ3 = λ4 = 8 the eigenvectors are given by the solution of

(A− 4I)e = 0

giving the unique solution e3 = [0 1 −1 0]T . The generalised eigenvector e∗3 is
obtained by solving

(A− 4I)e∗3 = e3

giving e∗3 = (6 − 1 0 − 6]T . The Jordan canonical form is

J =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−2 0 0 0

0 −2 0 0

0 0 4 1

0 0 0 4

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

Exercises 1.6.5

28 The quadratic form may be written in the form V = xT Ax where x =
[ x1 x2 x3 ]T and

A =

⎡
⎣ 2 2 1

2 5 2
1 2 2

⎤
⎦

The eigenvalues of A are given by∣∣∣∣∣∣
2 − λ 2 1

2 5 − λ 2
1 2 2 − λ

∣∣∣∣∣∣ = 0

⇒ (2 − λ)(λ2 − 7λ + 6) + 4(λ − 1) + (λ − 1) = 0

⇒ (λ − 1)(λ2 − 8λ + 7) = 0 ⇒ (λ − 1)2(λ − 7) = 0

giving the eigenvalues as λ1 = 7, λ2 = λ3 = 1
Normalized eigenvector corresponding to λ1 = 7 is

ê1 =
[ 1√

6
2√
6

1√
6

]T
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and two orthogonal linearly independent eigenvectors corresponding to λ − 1 are

ê2 =
[ 1√

2
0 − 1√

2

]T

ê3 =
[
− 1√

3
1√
3

− 1√
3

]T

Note that ê2 and ê3 are automatically orthogonal to ê1. The normalized
orthogonal modal matrix M̂ and spectral matrix Λ are

M̂ =

⎡
⎢⎣

1√
6

1√
2

− 1√
3

2√
6

0 1√
3

1√
6

− 1√
2

− 1√
3

⎤
⎥⎦ ,Λ =

⎡
⎣ 7 0 0

0 1 0
0 0 1

⎤
⎦

such that M̂T AM̂ = Λ.

Under the orthogonal transformation x = M̂y the quadratic form V reduces to

V = yT M̂T AM̂y = yT Λy

= [ y1 y2 y3 ]

⎡
⎣ 7 0 0

0 1 0
0 0 1

⎤
⎦

⎡
⎣ y1

y2

y3

⎤
⎦

= 7y2
1 + y2

2 + y2
3

29(a) The matrix of the quadratic form is A =

⎡
⎣ 1 −1 2
−1 2 −1

2 −1 7

⎤
⎦ and its leading

principal minors are

1,
∣∣∣∣ 1 −1
−1 2

∣∣∣∣ = 1,detA = 2

Thus, by Sylvester’s condition (a) the quadratic form is positive definite.

29(b) Matrix A =

⎡
⎣ 1 −1 2
−1 2 −1

2 −1 5

⎤
⎦ and its leading principal minors are

1,
∣∣∣∣ 1 −1
−1 2

∣∣∣∣ = 1,detA = 0

Thus, by Sylvester’s condition (c) the quadratic form is positive semidefinite.
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29(c) Matrix A =

⎡
⎣ 1 −1 2
−1 2 −1

2 −1 4

⎤
⎦ and its leading principal minors are

1,
∣∣∣∣ 1 −1
−1 2

∣∣∣∣ = 1,detA = −1.

Thus, none of Sylvester’s conditions are satisfied and the quadratic form is
indefinite.

30(a) The matrix of the quadratic form is A =
[

a −b
−b c

]
and its leading

principal minors are a and ac − b2 . By Sylvester’s condition (a) in the text the
quadratic form is positive definite if and only if

a > 0 and ac − b2 > 0

that is, a > 0 and ac > b2

30(b) The matrix of the quadratic form is A =

⎡
⎣ 2 −1 0
−1 a b

0 b 3

⎤
⎦ having principal

minors 2, 2a − 1 and detA = 6a − 2b2 − 3. Thus, by Sylvester’s condition (a) in
the text the quadratic form is positive definite if and only if

2a − 1 > 0 and 6a − 2b2 − 3 > 0

or 2a > 1 and 2b2 < 6a − 3

31 The eigenvalues of the matrix A are given by

0 =

∣∣∣∣∣∣
2 − λ 1 −1

1 2 − λ 1
−1 1 2 − λ

∣∣∣∣∣∣ R1+R3

∣∣∣∣∣∣
3 − λ 3 − λ 0

1 2 − λ 1
−1 1 2 − λ

∣∣∣∣∣∣
= (3 − λ)

∣∣∣∣∣∣
1 1 0
1 2 − λ 1
−1 1 2 − λ

∣∣∣∣∣∣
= (3 − λ)

∣∣∣∣∣∣
1 0 0
1 1 − λ 1
−1 2 2 − λ

∣∣∣∣∣∣ = (3 − λ)(λ2 − 3λ)
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so the eigenvalues are 3, 3, 0 indicating that the matrix is positive semidefinite.

The principal minors of A are

2,
∣∣∣∣ 2 1
1 2

∣∣∣∣ = 3, detA = 0

confirming, by Sylvester’s condition (a), that the matrix is positive semidefinite.

32 The matrix of the quadratic form is A =

⎡
⎣K 1 1

1 K −1
1 −1 1

⎤
⎦ having principal

minors

K,

∣∣∣∣ K 1
1 K

∣∣∣∣ = K2 − 1 and detA = K2 − K − 3

Thus, by Sylvester’s condition (a) the quadratic form is positive definite if and only
if

K2 − 1 = (K − 1)(K + 1) > 0 and K2 − K − 3 = (K − 2)(K + 1) > 0

i.e. K > 2 or K < −1.

If K = 2 then detA = 0 and the quadratic form is positive semidefinite.

33 Principal minors of the matrix are

3 + a,

∣∣∣∣ 3 + a 1
1 a

∣∣∣∣ = a2 + 3a − 1,detA = a3 + 3a2 − 6a − 8

Thus, by Sylvester’s condition (a) the quadratic form is positive definite if and only
if

3 + a > 0, a2 + 3a − 1 > 0 and a3 + 3a2 − 6a − 8 > 0

or (a + 1)(a + 4)(a − 2) > 0

3 + a > 0 ⇒ a > −3

a2 + 3a − 1 > 0 ⇒ a < −3.3 or a > 0.3

(a + 1)(a + 4)(a − 2) > 0 ⇒ a > 2 or − 4 < a < −1

Thus, minimum value of a for which the quadratic form is positive definite is
a = 2.
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34 A =

⎡
⎣ 1 2 −2

2 λ −3
−2 −3 λ

⎤
⎦

Principal minors are

1,
∣∣∣∣ 1 2
2 λ

∣∣∣∣ = λ − 4, detA = λ2 − 8λ + 15 = 0

Thus, by Sylvester’s condition (a) the quadratic form is positive definite if and only
if

λ − 4 > 0 ⇒ λ > 4

and (λ − 5)(λ − 3) > 0 ⇒ λ < 3 or λ > 5

Thus, it is positive definite if and only if λ > 5.

Exercises 1.7.1

35 The characteristic equation of A is

∣∣∣∣ 5 − λ 6
2 3 − λ

∣∣∣∣ = λ2 − 8λ + 3 = 0

Now A2 =
[

5 6
2 3

] [
5 6
2 3

]
=

[
27 48
16 21

]
so

A2 − 8A + 3I =
[

37 48
16 21

]
−

[
40 48
16 24

]
+

[
3 0
0 3

]
=

[
0 0
0 0

]

so that A satisfies its own characteristic equation.

36 The characteristic equation of A is

∣∣∣∣ 1 − λ 2
1 1 − λ

∣∣∣∣ = λ2 − 2λ − 1 = 0
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By Cayley–Hamilton theorem

A2 − 2A − I = 0

36(a) Follows that A2 = 2A + I =
[

2 4
2 2

]
+

[
1 0
0 1

]
=

[
3 4
2 3

]

36(b) A3 = 2A2 + A =
[

6 8
4 6

]
+

[
1 2
1 1

]
=

[
7 10
5 7

]

36(c) A4 = 2A3 + A2 =
[

14 20
10 14

]
+

[
3 4
2 3

]
=

[
17 24
12 17

]

37(a) The characteristic equation of A is

∣∣∣∣ 2 − λ 1
1 2 − λ

∣∣∣∣ = 0

that is, λ2 − 4λ + 3 = 0

Thus, by the Cayley–Hamilton theorem

A2 − 4A + 3I = 0

I =
1
3
[4A − A2]

so that A−1 =
1
3
[4I − A]

=
1
3

{[
4 0
0 4

]
−

[
2 1
1 2

]}
=

1
3

[
2 −1
−1 2

]

37(b) The characteristic equation of A is

∣∣∣∣∣∣
1 − λ 1 2

3 1 − λ 1
2 3 1 − λ

∣∣∣∣∣∣ = 0

that is, λ3 − 3λ2 − 7λ − 11 = 0

c©Pearson Education Limited 2011



34 Glyn James, Advanced Modern Engineering Mathematics, 4th Edition

A2 =

⎡
⎣ 1 1 2

3 1 1
2 3 1

⎤
⎦

⎡
⎣ 1 1 2

3 1 1
2 3 1

⎤
⎦ =

⎡
⎣ 8 8 5

8 7 8
13 8 8

⎤
⎦

Using (1.44)

A−1 =
1
11

(A2 − 3A− 7I)

=
1
11

⎡
⎣−2 5 −1
−1 −3 5
7 −1 −2

⎤
⎦

38 A2 =

⎡
⎣ 2 3 1

3 1 2
1 2 3

⎤
⎦

⎡
⎣ 2 3 1

3 1 2
1 2 3

⎤
⎦ =

⎡
⎣ 14 11 11

11 14 11
11 11 14

⎤
⎦

The characteristic equation of A is

λ2 − 6λ2 − 3λ + 18 = 0

so by the Cayley–Hamilton theorem

A3 = 6A2 + 3A− 18I

giving

A4 = 6(6A2 + 3A − 18I) + 3A2 − 18A = 39A2 − 108I

A5 = 39(6A2 + 3A − 18I) + 108A = 234A2 + 9A − 702I

A6 = 234(6A2 + 3A− 18I) + 9A2 − 702A = 1413A2 − 4212I

A7 = 1413(6A2 + 3A − 18I) + 4212A = 8478A2 + 27A − 25434I

Thus,

A7 − 3A6 + A4 + 3A3 − 2A2 + 3I = 4294A2 + 36A − 12957I

=

⎡
⎣ 47231 47342 47270

47342 47195 47306
47270 47306 47267

⎤
⎦
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39(a) Eigenvalues A are λ = 1 (repeated). Thus,

eAt = α0I + α1A with

et = α0 + α1

tet = α1

}
⇒ α1 = tet, α0 = (1 − t)et

so eAt = (1 − t)etI + tetA =
[

et 0
tet et

]

39(b) Eigenvalues A are λ = 1 and λ = 2. Thus,

eAt = α0I + α1A with

et = α0 + α1

e2t = α0 + 2α1

}
⇒ α0 = 2et − e2t, α1 = e2t − et

so eAt = (2et − e2t)I + (e2t − et)A =
[

et 0
e2t − et e2t

]

40 Eigenvalues of A are λ1 = π, λ2 =
π

2
, λ3 =

π

2
.

Thus,
sinA = α0A + α1A + α2A2 with

sin π = 0 = α0 + α1π + α2π
2

sin
π

2
= 1 = α0 + α1

π

2
+ α2

π2

4
cos

π

2
= 0 = α1 + πα2

Solving gives α0 = 0, α1 =
4
π

, α2 = − 4
π2

so that

sinA =
4
π
A− 4

π2
A2 =

⎡
⎣ 0 0 0

0 1 0
0 0 1

⎤
⎦

41(a)
dA
dt

=
[

d
dt (t

2 + 1) d
dt (2t − 3)

d
dt (5 − t) d

dt (t
2 − t + 3)

]
=

[
2t 2
−1 2t − 1

]
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41(b) ∫ 2

1

Adt =
[ ∫ 2

1
(t2 + 1)dt

∫ 2

1
(2t − 3)dt∫ 2

1
(5 − t)dt

∫ 2

1
(t2 − t + 3)dt

]
=

⎡
⎣ 10

3 0

7
2

23
6

⎤
⎦

42

A2 =
[

t2 + 1 t − 1
5 0

] [
t2 + 1 t − 1

5 0

]

=
[

t4 + 2t2 + 5t − 4 t3 − t2 + t − 1
5t2 + 5 5t − 5

]
d

dt
(A2) =

[
4t3 + 4t + 5 3t2 − 2t + 1

10t 5

]

2A
dA
dt

=
[

4t3 + 4t 2t2 + 1
20t 0

]

Thus,
d

dt
(A2) �= 2A

dA
dt

.

Exercises 1.8.4
43(a) row rank

A =

⎡
⎣ 1 2 3 4

3 4 7 10
2 1 5 7

⎤
⎦ row2 − 3row1

→
row3 − 2row1

⎡
⎣ 1 2 3 4

0 −2 −2 −2
0 −3 −1 −1

⎤
⎦

− 1
2 row2
→

⎡
⎣ 1 2 4 4

0 1 1 1
0 −3 −1 −1

⎤
⎦ row3 + 3row2

→

⎡
⎣ 1 2 3 4

0 1 1 1
0 0 2 2

⎤
⎦

echelon form, row rank 3
column rank

A

col2 − 2col1
→

col3 − 3col1
col4 − 4col1

⎡
⎣ 1 0 0 0

3 −2 −2 2
2 −3 2 0

⎤
⎦ col3 − col2

→
col4 − col2

⎡
⎣ 1 0 0 0

0 −2 0 0
2 −3 2 2

⎤
⎦

col4 − col3
→

⎡
⎣ 1 0 0 0

3 −2 0 0
2 −3 2 0

⎤
⎦

echelon form, column rank3

Thus row rank(A) = column rank(A) = 3
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(b) A is of full rank since rank(A)=min(m,n)=min(3,4)= 3

44(a) AAT =
[

4 11 14
8 7 −2

]⎡
⎣ 4 8

11 7
14 −2

⎤
⎦ =

[
333 81
81 117

]
= 9

[
37 9
9 13

]

The eigenvalues λi of AAT are given by the solutions of the equations

∣∣∣AAT − λI
∣∣∣ =

∣∣∣∣ 333 − λ 8
81 117 − λ

∣∣∣∣ = 0 ⇒ λ2 − 450λ + 32400 = 0

⇒ (λ − 360)(λ − 90) = 0

giving the eigenvalues as λ1 = 360, λ2 = 90. Solving the equations.

(AAT − λiI)ui = 0

gives the corresponding eigenvectors as

u1 = [ 3 1 ]T ,u2 = [ 1 −2 ]T

with the corresponding normalized eigenvectors being

û1 =
[ 3√

10
1√
10

]T
, û2 =

[ 1√
10

− 3√
10

]T

leading to the orthogonal matrix

Û =

[
3√
10

1√
10

1√
10

− 3√
10

]

AT A =

⎡
⎣ 4 8

11 7
14 −2

⎤
⎦[

4 11 14
8 7 −2

]
=

⎡
⎣ 80 100 40

100 170 140
40 140 200

⎤
⎦

Solving
∣∣AT A − μI

∣∣ =

∣∣∣∣∣∣
80 − μ 100 40
100 170 − μ 140
40 140 200 − μ

∣∣∣∣∣∣ = 0

gives the eigenvalues μ1 = 360, μ2 = 90, μ3 = 0 with corresponding normalized
eigenvectors

v̂1 = [ 1
3

2
3

2
3 ]T , v̂2 = [− 2

3 − 1
3

2
3 ]T , v̂3 = [ 2

3 − 2
3

1
3 ]T
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leading to the orthogonal matrix

V̂ =

⎡
⎣ 1

3 − 2
3

2
3

2
3 − 1

3 − 2
3

2
3

2
3

1
3

⎤
⎦

The singular values of A are σ1 =
√

360 = 6
√

10 and σ2 =
√

90 = 3
√

10 giving

Σ =
[

6
√

10 0 0
0 3

√
10 0

]

Thus, the SVD form of A is

A = ÛΣV̂T =

[
3√
10

1√
10

1√
10

− 3√
10

] [
6
√

10 0 0
0 3

√
10 0

] ⎡
⎣ 1

3
2
3

2
3

− 2
3 − 1

3
2
3

2
3 − 2

3
1
3

⎤
⎦

(Direct multiplication confirms A =
[

4 11 14
8 7 −2

]
)

(b) Using (1.55) the pseudo inverse of A is

A† = V̂Σ∗Û, Σ∗ =

⎡
⎣

1
6
√

10
0

0 2
3
√

10
0 0

⎤
⎦ ⇒

⎡
⎣

1
3 − 2

3
2
3

2
3 − 1

3 − 2
3

2
3

2
3

1
3

⎤
⎦

⎡
⎣

1
6
√

10
0

0 1
3
√

10
0 0

⎤
⎦

[
3√
10

1√
10

1√
10

− 3√
10

]
⇒ A† = 1

180

⎡
⎣−1 13

4 8
10 −10

⎤
⎦

AA† = 1
180

[
4 11 14
8 7 −2

]⎡
⎣−1 13

4 8
10 −10

⎤
⎦ = 1

180

[
180 0
0 180

]
= I

(c) Rank(A) = 2 so A is of full rank. Since number of rows is less than the number
of columns A† may be determined using (1.58b) as

A† = AT (AAT )−1 =

⎡
⎣ 4 8

11 7
14 −2

⎤
⎦[

333 81
81 117

]−1

= 1
180

⎡
⎣−1 13

4 8
10 −10

⎤
⎦

which confirms with the value determined in (b).
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45 A =

⎡
⎢⎢⎢⎣

1 1
3 0
−2 1
0 2
−1 2

⎤
⎥⎥⎥⎦

row2 − 3row1
row3 + 2row1

→
row5 + row1

⎡
⎢⎢⎢⎣

1 1
0 −3
0 3
0 2
0 3

⎤
⎥⎥⎥⎦

row3 + row2
row4 + 2

3 row2
→

row5 + row2

⎡
⎢⎢⎢⎣

1 1
0 −3
0 0
0 0
0 0

⎤
⎥⎥⎥⎦

echelon form so row rank = 2 = column rank

Thus, rank A = 2 =min(5,2) and so A is of full rank.

Since A is of full rank and number of rows is greater than number of columns we
can determine the pseudo inverse using result (1.58a)

A† = (AT A)−1AT =
[

15 −3
−3 10

]−1 [
1 3 −2 0 −1
1 0 1 2 2

]

= 1
141

[
10 3
3 15

] [
1 3 −2 0 −1
1 0 1 2 2

]

= 1
141

[
13 30 −17 6 −4
18 9 9 30 27

]

A†A = 1
141

[
13 30 −17 6 −4
18 9 9 30 27

]
⎡
⎢⎢⎢⎣

1 1
3 0
−2 1
0 2
−1 2

⎤
⎥⎥⎥⎦ = 1

141

[
141 0
0 141

]
= I

46(a) A =

⎡
⎣ 1 −1
−2 2
2 −2

⎤
⎦ row2 + 2row1

→
row3 − 2row1

⎡
⎣ 1 −1

0 0
0 0

⎤
⎦

Thus, rank A = 1and is not of full rank

(b) AAT =

⎡
⎣ 1 −1
−2 2
2 −2

⎤
⎦[

1 2 2
−1 2 −2

]
=

⎡
⎣ 2 −4 4
−4 8 −8
4 −8 8

⎤
⎦

The eigenvalues λi are given by

∣∣∣∣∣∣
2 − λ −4 4
−4 2 − λ −8
4 −8 8 − λ

∣∣∣∣∣∣ = 0 ⇒ λ2(−λ + 18) = 0

giving the eigenvalues as λ1 = 18, λ2 = 0, λ3 = 0. The corresponding eigenvectors
and normalized eigenvectors are
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u1 = [ 1 −2 2 ]T ⇒ û1 = [ 1
3 − 2

3
2
3 ]T

u2 = [ 0 1 1 ]T ⇒ û2 =
[
0 1√

2
1√
2

]T

u3 = [ 2 1 0 ]T ⇒ û3 =
[ 2√

5
1√
5

0
]T

leading to the orthogonal matrix

Û =

⎡
⎢⎣

1
3 0 2√

5

− 2
3

1√
2

1√
5

2
3

1√
2

0

⎤
⎥⎦

AT A =
[

1 −2 2
−1 2 −2

] ⎡
⎣ 1 −1
−2 2
2 −2

⎤
⎦ = 9

[
1 −1
−1 1

]

having eigenvalues μ1 = 18 and μ2 = 0 and corresponding eigenvectors

v1 = [ 1 −1 ]T ⇒ v̂1 =
[ 1√

2
− 1√

2

]T

v2 = [ 1 1 ]T ⇒ v̂2 =
[ 1√

2
1√
2

]T

leading to the orthogonal matrix

V̂ =

[
1√
2

1√
2

− 1√
2

1√
2

]

A has the single (equal to its rank) singular value σ1 =
√

18 = 3
√

2 so that

Σ =

⎡
⎣ 3

√
2 0

0 0
0 0

⎤
⎦ and the SVD form of A is

A = ÛΣV̂T =

⎡
⎢⎣

1
3 0 2√

5

− 2
3

1√
2

1√
5

2
3

1√
2

0

⎤
⎥⎦

⎡
⎣ 3

√
2 0

0 0
0 0

⎤
⎦[

1√
2

− 1√
2

1√
2

1√
2

]

Direct multiplication confirms that A =

⎡
⎣ 1 −1
−2 2
2 −2

⎤
⎦

(c) Pseudo inverse is given by

A† = V̂Σ∗ÛT =

[
1√
2

1√
2

− 1√
2

1√
2

] [
1

3
√

2
0 0

0 0 0

]⎡
⎣

1
3 − 2

3
2
3

0 1√
2

1√
2

2√
5

1√
5

0

⎤
⎦ = 1

18

[
1 −2 2
−1 2 −2

]
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Direct multiplication confirms AA†A = AandA†AA† = A†

(d) Equations may be written as

⎡
⎣ 1 −1
−2 2
2 −2

⎤
⎦[

x
y

]
=

⎡
⎣ 1

2
3

⎤
⎦ ≡ Ax = b

The least squares solution is x = A†b ⇒
[

x
y

]
= 1

18

[
1 −2 2
−1 2 −2

] ⎡
⎣ 1

2
3

⎤
⎦ =

[
1
6

− 1
6

]
giving x = 1

6 and y = − 1
6

(e) Minimize L = (x − y − 1)2 + (−2x + 2y − 2)2 + (2x − 2y − 3)2

∂L

∂x
= 0 ⇒ 2(x − y − 1) − 4(−2x + 2y − 2) + 4(2x − 2y − 3) = 18x − 18y − 6 = 0

⇒ 3x − 3y − 1 = 0
∂L

∂y
= 0 ⇒ −2(x − y − 1) + 4(−2x + 2y − 2) − 4(2x − 2y − 3) = −18x + 18y + 6 = 0

⇒ −3x + 3y + 1 = 0

Solving the two simultaneous equations gives the least squares solution x = 1
6 ,

y = − 1
6 confirming the answer in (d)

47(a) Equations may be written as

⎡
⎣ 3 −1

1 3
1 1

⎤
⎦[

x
y

]
=

⎡
⎣ 1

2
3

⎤
⎦ ≡ Ax = b

Using the pseudo inverse obtained in Example 1.39, the least squares solution is

x = A†b ⇒
[

x
y

]
= 1

60

[
17 4 5
−7 16 5

]⎡
⎣ 1

2
3

⎤
⎦ =

[
2
3
2
3

]

giving x = y = 2
3
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(b) Minimize L = (3x − y − 1)2 + (x + 3y − 2)2 + (x + y − 3)2

∂L

∂x
= 0 ⇒ 6(3x − y − 1) + 2(x + 3y − 2) + 2(x + y − 3) = 0

⇒ 11x + y − 8 = 0
∂L

∂y
= 0 ⇒ −2(3x − y − 1) + 6(x + 3y − 2) + 2(x + y − 3) = 0

⇒ x + 11y − 8 = 0

Solving the two simultaneous equations gives the least squares solution x = y = 2
3

confirming the answer in (a)

48(a)

A =

⎡
⎢⎣

1 0 −2
0 1 −1
−1 1 1
2 −1 2

⎤
⎥⎦ row3 + row1

→
row4 − 2row1

⎡
⎢⎣

1 0 −2
0 1 −1
0 1 −1
0 −1 6

⎤
⎥⎦ row3 − row2

→
row4 + row2

⎡
⎢⎣

1 0 −2
0 1 −1
0 0 0
0 0 5

⎤
⎥⎦

Thus, A is of rank 3 and is of full rank as 3=min(4,3)

(b) Since A is of full rank

A† = (AT A)−1AT =

⎡
⎣ 6 −3 1
−3 3 −2
1 −2 10

⎤
⎦
−1 ⎡

⎣ 1 0 −1 2
0 1 1 −1
−2 −1 1 2

⎤
⎦

⇒ A† = 1
75

⎡
⎣ 26 28 3

28 59 9
3 9 9

⎤
⎦

⎡
⎣ 1 0 −1 2

0 1 1 −1
−2 −1 1 2

⎤
⎦ = 1

15

⎡
⎣ 4 5 1 6

2 10 8 3
−3 0 3 3

⎤
⎦

(c) Direct multiplication confirms that A† satisfies the conditions

AAT and AT A are symmetric, AA†A = A and A†AA† = A†

49(a) A =

⎡
⎣ 2 1

1 2
1 1

⎤
⎦ is of full rank 2 so pseudo inverse is

A† = (AT A)−1AT =
[

0.6364 −0.3636 0.0909
−0.3636 0.6364 0.0909

]
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Equations (i) are consistent with unique solution

[
x
y

]
= A†

⎡
⎣ 3

3
2

⎤
⎦ ⇒ x = y = 1

Equations (ii) are inconsistent with least squares solution

[
x
y

]
= A†

⎡
⎣ 3

3
3

⎤
⎦ ⇒ x = 1.0909, y = 1.0909

(b) A =

⎡
⎣ 2 1

1 2
10 10

⎤
⎦ with pseudo inverse A† =

[
0.5072 −0.4928 0.0478
−0.4928 0.5072 0.0478

]

Equations (i) are consistent with unique solution

[
x
y

]
= A†

⎡
⎣ 3

3
20

⎤
⎦ ⇒ x = y = 1

Equations (ii) are inconsistent and have least squares solution

[
x
y

]
= A†

⎡
⎣ 3

3
30

⎤
⎦ ⇒ x = y = 1.4785

(c) A =

⎡
⎣ 2 1

1 2
100 100

⎤
⎦ with pseudo inverse A† =

[
0.5001 −0.4999 0.0050
−o.4999 0.5001 0.0050

]

Equations (i) are consistent with unique solution

[
x
y

]
= A†

⎡
⎣ 3

3
200

⎤
⎦ ⇒ x = y = 1

Equations (ii) are inconsistent with least squares solution

[
x
y

]
= A

⎡
⎣ 3

3
300

⎤
⎦ ⇒ x = y = 1.4998
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Since the sets of equations (i) are consistent weighting the last equation has no
effect on the least squares solution which is unique. However, since the sets of
equations (ii) are inconsistent the solution given is not unique but is the best in
the least squares sense. Clearly as the weighting of the third equation increases
from (a) to (b) to (c) the better is the matching to the third equation, and the last
case (c) does not bother too much with the first two equations.

50 Data may be represented in the matrix form

⎡
⎢⎢⎢⎣

0 1
1 1
2 1
3 1
4 1

⎤
⎥⎥⎥⎦

[
m
c

]
=

⎡
⎢⎢⎢⎣

1
1
2
2
3

⎤
⎥⎥⎥⎦

Az = Y

MATLAB gives the pseudo inverse

A† =
[
−0.2 −0.1 0 0.1 0.2
0.8 0.4 0.2 0 −0.2

]

and, the least squares solution

[
m
c

]
= A†y =

[
0.5
0.8

]

leads to the linear model

y = 0.5x + 0.8

Exercises 1.9.3

51(a) Taking x1 = y

ẋ1 = x2 =
dy

dt

ẋ2 = x3 =
d2y

dt2

ẋ3 =
d3y

dt3
= u(t) − 4x1 − 5x2 − 4x3
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Thus, state space form is

ẋ =

⎡
⎣ ẋ1

ẋ2

ẋ3

⎤
⎦ =

⎡
⎣ 0 1 0

0 0 1
−4 −5 −4

⎤
⎦

⎡
⎣x1

x2

x3

⎤
⎦ +

⎡
⎣ 0

0
1

⎤
⎦u(t)

y = x1 = [1 0 0] [x1 x2 x3]T

51(b)
x1 = y

x2 = ẋ1 =
dy

dt

x3 = ẋ2 =
d2y

dt2

x4 = ẋ3 =
d3y

dt3

ẋ4 =
d4y

dt4
= −4x2 − 2x3 + 5u(t)

Thus, state space form is

ẋ =

⎡
⎢⎣

ẋ1

ẋ2

ẋ3

ẋ4

⎤
⎥⎦ =

⎡
⎢⎣

0 1 0 0
0 0 1 0
0 0 0 1
0 −4 −2 0

⎤
⎥⎦

⎡
⎢⎣

x1

x2

x3

x4

⎤
⎥⎦ +

⎡
⎢⎣

0
0
0
5

⎤
⎥⎦u(t)

y = x1 = [1 0 0 0] [x1 x2 x3 x4]T

52(a) Taking A to be the companion matrix of the LHS

A =

⎡
⎣ 0 1 0

0 0 1
−7 −5 −6

⎤
⎦

and taking b = [ 0 0 1 ]T and then using (1.67) in the text c = [ 5 3 1 ].
Then from (1.84) the state-space form of the dynamic model is

ẋ = Ax + bu, y =cx

(b) Taking A to be the companion matrix of the LHS

A =

⎡
⎣ 0 1 0

0 0 1
0 −3 −4

⎤
⎦
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and taking b = [ 0 0 1 ]T then using (1.67) in the text c = [ 2 3 1 ]. Then
from (1.84) the state-space form of the dynamic model is

ẋ = Ax + bu, y =cx

53 Applying Kirchhoff’s second law to the individual loops gives

e = R1(i1 + i2) + vc + L1
di1
dt

, v̇c =
1
C

(i1 + i2)

e = R1(i1 + i2) + vc + L2
di2
dt

+ R2i2

so that,
di1
dt

= −R1

L1
i1 −

R1

L1
i2 −

vc

L1
+

e

L1

di2
dt

= −R1

L2
i1 −

(R1 + R2)
L2

i2 −
vc

L2
+

e

L2

dvc

dt
=

1
C

(i1 + i2)

Taking x1 = i1, x2 = i2, x3 = vc, u = e(t) gives the state equation as

⎡
⎣ ẋ1

ẋ2

ẋ3

⎤
⎦ =

⎡
⎣−R1

L1
−R2

L1
− 1

L1

−R1
L2

− (R1+R2)
L2

− 1
L2

1
C

1
C 0

⎤
⎦

⎡
⎣x1

x2

x3

⎤
⎦ +

⎡
⎣ 1

L1
1

L2
0

⎤
⎦u(t) (1)

The output y = voltage drop across R2 = R2i2 = R2x2 so that

y = [0 R2 0] [x1 x2 x3]T (2)

Equations (1) and (2) are then in the required form

ẋ = A x + bu , y = cT x

54 The equations of motion, using Newton’s second law, may be written down
for the body mass and axle/wheel mass from which a state-space model can be
deduced. Alternatively a block diagram for the system, which is more informative
for modelling purposes, may be drawn up as follows
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where s denotes the Laplace ‘s ’ and upper case variables X,Y, Y1 denote the
corresponding Laplace transforms of the corresponding lower case time domain
variables x(t), y(t), y1(t); y1(t) is the vertical displacement of the axle/wheel mass.
Using basic block diagram rules this block diagram may be reduced to the
input/output transfer function model

X−→
K1(K + Bs)

(M1s2 + K1)(Ms2 + Bs + K) + Ms2(K + Bs) Y−→

or the time domain differential equation model

M1M
d4y

dt4
+ B(M1 + M)

d3y

dt3
+ (K1M + KM1 + KM)

d2y

dt2

+ K1B
dy

dt
+ K1Ky = K1K2x + K1B

dx

dt

A possible state space model is

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

ż1

ż2

ż3

ż4

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−B(M1 + M) 1 0 0

−(K1M+KM1+KM)
MM1

0 1 0

−K1B
M1M 0 0 1

−K1K
M1M 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

z1

z2

z3

z4

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0

0

K1B
M1M

K1K2
MM1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

x(t)

y = [1 0 0 0]z(t), z = [z1 z2 z3 z4]T .

Clearly alternative forms may be written down, such as, for example, the
companion form of equation (1.66) in the text. Disadvantage is that its output
y is not one of the state variables.
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55 Applying Kirchhoff’s second law to the first loop gives

x1 + R3(i − i1) + R1i = u

that is, (R1 + R3)i − R3i1 + x1 = u

Applying it to the outer loop gives

x2 + (R4 + R2)i1 + R1i = u

Taking α = R1R3 + (R1 + R3)(R4 + R2) then gives

αi = (R2 + R3 + R4)u − (R2 + R4)x1 − R3x2

and αi1 = R3u + R1x1 − (R1 + R3)x2

Thus,

α(i − i1) = (R4 + R2)u − (R1 + R2 + R4)x1 + R1x2

Voltage drop across C1 : ẋ1 =
1
C1

(i − i1)

=
1

αC1
[−(R1 + R2 + R4)x1 + R1x2 + (R4 + R2)u](1)

Voltage drop across C2 : ẋ2 =
1
C2

i1

=
1

αC2
[R1x1 − (R1 + R3)x2 + R3u] (2)

y1 = i1 =
R1

α
x − (R1 + R3)

α
x2 +

R3

α
u (3)

y2 = R2(i − i1) = −R3

α
(R1 + R2 + R4)x1 +

R3R1

α
x2 + R3

(R4 + R2)
α

u (4)

Equations (1)–(4) give the required state space model.

Substituting the given values for R1, R2, R3, R4, C1 and C2 gives the state matrix
A as

A =

⎡
⎣ −9

35.10−3
1

35.10−3

1
35.10−3

−4
35.10−3

⎤
⎦ =

103

35

[
−9 1
1 −4

]
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Let β =
103

35
then eigenvalues are solutions of

∣∣∣∣−9β − λ β
β −4β − λ

∣∣∣∣ = λ2 + 13βλ + 35β2 = 0

giving

λ =
−13 ±

√
29

2
β � −2.6 × 102 or − 1.1 × 102

Exercises 1.10.4

56 ΦΦΦ(t) = eAt where A =
[

1 0
1 1

]
Eigenvalues of A are λ = 1, λ = 1 so

eAt = α0(t)I + α1(t)A

where α0, α1 satisfy
eλt = α0 + α1λ, λ = 1

teλt = α1

giving α1 = tet, α0 = et − tet

Thus,

ΦΦΦ(t) = eAt =
[

et − tet 0
0 et − tet

]
+

[
tet 0
tet tet

]
=

[
et 0
tet et

]

56(a) ΦΦΦ(0) =
[

1 0
0 1

]
= I

56(b)

ΦΦΦ(t2 − t1)ΦΦΦ(t1) =
[

et2e−t1 0
(t2 − t1)et2e−t1 et2e−t1

] [
et1 0

t1e
t1 et1

]

=
[

et2 0
(t2 − t1)et2 + t1e

t2 et2

]
=

[
et2 0

t2e
t2 et2

]
= ΦΦΦ(t2)
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56(c) ΦΦΦ−1 =
1

e2t

[
et 0

−tet et

]
=

[
e−t 0

−te−t e−t

]
= ΦΦΦ(−t)

57 Take x1 = y, x2 = ẋ1 =
dy

dt
, ẋ2 =

d2y

dt2
= −x1 − 2x2 so in vector–matrix

form the differential equation is

ẋ =
[

0 1
−1 −2

]
x, y = [1 0]A

Taking A =
[

0 1
−1 −2

]
its eigenvalues are λ = −1, λ = −1

eAt = α0I + α1A where α0, α1 satisfy

eλt = α0 + α1λ, λ = −1

teλt = α1

giving α0 = e−t + te−t, α1 = te−t . Thus,

eAt =
[

e−t + te−t te−t

−te−t e−t − te−t

]

Thus, solution of differential equation is

x(t) = eAtx(0), x(0) = [1 1]T

=
[

e−t + 2te−t

e−t − 2te−t

]

giving y(t) = x1(t) = e−t + 2te−t

The differential equation may be solved directly using the techniques of Chapter 10
of the companion text Modern Engineering Mathematics or using Laplace
transforms. Both approaches confirm the solution

y = (1 + 2t)e−2t

58 Taking A =
[

1 0
1 1

]
then from Exercise 56

eAt =
[

et 0
tet et

]
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and the required solution is

x(t) = eAtx(0) =
[

et 0
tet et

] [
1
1

]
=

[
et

(1 + t)et

]

59 Taking A =
[

0 1
−6 −5

]
its eigenvalues are λ1 = −3, λ2 = −2.

Thus, eAt = α0I + α1A where α0, α1 satisfy

e−3t = α0 − 3α1, e−2t = α0 − 2α1

α0 = 3e−2t − 2e−3t, α1 = e−2t − e−3t

so

eAt =
[

3e−2t − 2e−3t e−2t − e−3t

6e−3t − te−2t 3e−3t − 2e−2t

]

Thus, the first term in (6.73) becomes

eAtx(0) = eAt[1 − 1]T =
[

2e−2t − e−3t

3e−3t − 4e−2t

]

and the second term is

∫ t

0

eA(t−τ)bu(τ)dτ =
∫ t

0

2
[

6e−2(t−τ) − 6e−3(t−τ)

18e−3(t−τ) − 12e−2(t−τ)

]
dτ

= 2
[

3e−2(t−τ) − 2e−3(t−τ)

6e−3(t−τ) − 6e−2(t−τ)

]t

0

= 2
[

1 − 3e−2t + 2e−3t

6e−2t − 6e−3t

]

Thus, required solution is

x(t) =
[

2e−2t − e−3t + 2 − 6e−3t + 4e−3t

3e−3t − 4e−2t + 12e−2t − 12e−3t

]

=
[

2 − 4e−2t + 3e−3t

8e−2t − 9e−3t

]
that is, x1 = 2 − 4e−2t + 3e−3t, x2 = 8e−2t − 9e−3t
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60 In state space form,

ẋ =
[

0 1
−2 −3

]
x +

[
2
0

]
u(t), u(t) = e−t, x(0) = [0 1]T

Taking A =
[

0 1
−2 −3

]
its eigenvalues are λ1 = −2, λ2 = −1 so

eAt = α0I + α1A where α0, α1 satisfy

e−2t = α0 − 2α1, e−t = α0 − α1 ⇒ α0 = 2e−t − e−2t, α1 = e−t − e−2t

Thus,

eAt =
[

2e−t − e−2t e−t − e−2t

−2e−t + 2e−2t −e−t + 2e−2t

]

and eAtx(0) =
[

e−t − e−2t

−e−t + 2e−2t

]
∫ t

0

A(t−τ)bu(τ)dτ =
∫ t

0

[
4e−(t−τ) − 2e−2(t−τ)

−4e−(t−τ) + 4e−2(t−τ)

]
e−τdτ

=
∫ t

0

[
4e−t − 2e−2teτ

−4e−t + 4e−2teτ

]
dτ

=
[

4τe−t − 2e−2teτ

−4τe−t + 4e−2teτ

]t

0

=
[

4te−t − 2e−t + 2e−2t

−4te−t + 4e−t − 4e−2t

]

We therefore have the solution

x(t) = eAtx(0) +
∫ t

0

eA(t−τ)bu(τ)dτ

=
[

4te−t + e−2t − e−t

−4te−t + 3e−t − 2e−2t

]

that is,
x1 = 4te−t + e−2t − e−t, x2 = −4te−t + 3e−t − 2e−2t

61 Taking A =
[

3 4
2 1

]
its eigenvalues are λ1 = 5, λ2 = −1.

eAt = α0I + α1A where α0, α1 satisfy

e5t = α0 + 5α1, e−t = α0 − α1 ⇒ α0 =
1
6
e5t +

5
6
e−t, α1 =

1
6
e5t +

1
6
e−t
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Thus, transition matrix is

eAt =
[ 1

3e−t + 2
3e5t 2

3e5t − 2
3e−t

1
3e5t − 1

3e−t 1
3e5t + 2

3e−t

]

and eAtx(0) = eAt[1 2]T =
[

2e5t − e−t

e5t + e−t

]
∫ t

0

eA(t−τ)Bu(τ)dτ =
∫ t

0

eA(t−τ)

[
0 1
1 1

] [
4
3

]
dτ

=
∫ t

0

At−τ

[
3
7

]
dτ

=
∫ t

0

[
20
3 e5(t−τ) − 11

3 e−(t−τ)

10
3 e5(t−τ) + 11

3 e−(t−τ)

]
dτ

=
[
− 4

3e5(t−τ) − 11
3 e−(t−τ)

− 2
3e5(t−τ) + 11

3 e−(t−τ)

]t

0

=
[
−5 + 11

3 e−t + 4
3e5t

3 − 11
3 e−t + 2

3e5t

]

Thus, solution is

x(t) = eAtx(0) +
∫ t

0

eA(t−τ)Bu(t)dτ

=
[
−5 + 8

3e−t + 10
3 e5t

3 − 8
3e−t + 5

3e5t

]

Exercises 1.10.7

62 Eigenvalues of matrix A =
[
− 3

2
3
4

1 − 5
2

]
are given by

| A − λI |= λ2 + 4λ + 3 = (λ + 3)(λ + 1) = 0

that is, λ1 = −1, λ2 = −3

having corresponding eigenvectors e1 = [3 2]T, e2 = [1 − 2]T.

Denoting the reciprocal basis vectors by

r1 = [r11 r12]T , r2 = [r21 r22]T
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and using the relationships rT
i ej = δij(i, j = 1, 2) we have

3r11 + 2r12 = 1
r11 − 2r12 = 0

}
r1 = [14

1
8 ]T

3r21 + 2r22 = 0
r21 − 2r22 = 1

}
r2 = [14 − 3

8 ]T

Thus,

rT
1 x(0) =

1
2

+
1
2

= 1, rT
2 x(0) =

1
2
− 3

2
= −1

so the spectral form of solution is

x(t) = e−te1 − e−3te2

The trajectory is readily drawn showing that it approaches the origin along the
eigenvector e1 since e−3t → 0 faster than e−t . See Figure 1.9 in the text.

63 Taking A =
[
−2 2

2 −5

]
eigenvalues are λ1 = −6, λ2 = −1 having

corresponding eigenvectors e1 = [1 − 2]T , e2 = [2 1]T .

Denoting the reciprocal basis vectors by

r1 = [r11 r12]T, r2 = [r21 r22]T

and using the relationships rT
i ej = δij(i, j = 1, 2) we have

r11 − 2r12 = 1
2r11 + r12 = 0

}
⇒ r11 = 1

5 , r12 = − 2
5 ⇒ r1 = 1

5 [1 − 2]T

r21 − 2r22 = 0
2r21 + r22 = 1

}
⇒ r21 = 2

5 , r22 = − 1
5 ⇒ r2 = 1

5 [2 1]T

Thus,

rT
1 x(0) =

1
5
[1 − 2]

[
2
3

]
= −4

5

rT
2 x(0) =

1
5
[2 1]

[
2
3

]
=

7
5
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then response is

x(t) =
2∑

i=1

rT
i x(0)eλitei

= −4
5
e−6t

[
1
−2

]
+

7
5
e−t

[
2
1

]
=

1
5

[
−4e−6t + 14e−t

8e−6t + 7e−t

]

Again, following Figure 1.9 in the text, the trajectory is readily drawn and showing
that it approaches the origin along the eigenvector e2 since e−6t → 0 faster than
e−t .

64 Taking A =
[

0 −4
2 −4

]
eigenvalues are λ1 = −2 + j2, λ2 = −2 − j2 having

corresponding eigenvectors e1 = [2 1 − j]T , e2 = [2 1 + j]T .

Let r1 = r′1 + jr′′1 be reciprocal base vector to e1 then

rT
1 e1 = 1 = [r′ + jr′′1 ]T [e′1 + je′′1 ]T where e1 = e′1 + je′′1

rT
1 e2 = 0 = [r′1 + jr′′1 ]T [e′1 − je′′1 ]T since e2 = conjugate e1

Thus,

[(r′1)
T e′1 − (r′′1)T e′′1 ] + j[(r′′1)T e′1 + (r′1)

T e′′1 ] = 1

and

[(r′1)
T e′1 − (r′′1)T e′1] + j[(r′1)

T e1
1 − (r′1)

T e′1] = 0
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giving

(r′1)
T e′1 =

1
2

, (r′1)
T e′1 =

1
2

, (r′1)
T e′1 = (r′1)

T e′′1 = 0

Now e′1 = [2 1]T , e′′1 = [0 − 1]T

Let r′1 = [a b]T and r′′1 = [c d]T then from above

2a + b =
1
2
,−b = 0 and −d = −1

2
, 2c + d = 0

giving a =
1
4
, b = 0, c = −1

4
, d =

1
2

so that

r1 = r′1 + jr′′1 =
1
4
[1 − j 2j]T

Since r2 is the complex conjugate of r1

r2 =
1
4
[1 + j − 2j]T

so the solution is given by

x(t) = rT
1 x(0)eλ1te1 + rT

2 x(0)eλ2te2

and since rT
1 x(0) =

1
2
(1 + j), rT

2 x(0) =
1
2
(1 − j)

x(t) = e−2t

{
1
2
(1 + j)e2jt

[
2

1 − j

]
+

1
2
(1 − j)e−2jt

[
2

1 + j

]}

= e−2t

{
(cos 2t − sin 2t)

[
2
1

]
− (cos 2t + sin 2t)

[
0
−1

]}

= e−2t

{
(cos 2t − sin 2t)e′1 − (cos 2t + sin 2t)e′′1

}
where e1 = e′1 + je′′1

To plot the trajectory, first plot e′1, e
′′
1 in the plane and then using these as a frame

of reference plot the trajectory. A sketch is as follows
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65 Following section 1.10.6 if the equations are representative of

ẋ = A x + bu , y = cT x

then making the substitution x = M ξξξ , where M is the modal matrix of A ,
reduces the system to the canonical form

ξ̇ξξ = Λ ξξξ + (M−1b)u , y = (cT M)ξξξ

where Λ is the spectral matrix of A .

Eigenvalues of A are given by

∣∣∣∣∣∣
1 − λ 1 −2
−1 2 − λ 1
0 1 −1 − λ

∣∣∣∣∣∣ = λ3 − 2λ2 − λ + 2 = (λ − 1)(λ + 2)(λ + 1) = 0

so the eigenvalues are λ1 = 2, λ2 = 1, λ3 = −1. The corresponding eigenvectors
are readily determined as

e1 = [1 3 1]T , e2 = [3 2 1]T , e3 = [1 0 1]T

Thus, M =

⎡
⎣ 1 3 1

3 2 0
1 1 1

⎤
⎦ and Λ =

⎡
⎣ 2 0 0

0 1 0
0 0 −1

⎤
⎦
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M−1 =
1

detM
adj M = −1

6

⎡
⎣ 2 −2 −2
−3 0 3

1 2 −7

⎤
⎦ so required canonical form is

⎡
⎣ ξ̇1

ξ̇2

ξ̇3

⎤
⎦ =

⎡
⎣ 2 0 0

0 1 0
0 0 −1

⎤
⎦

⎡
⎣ ξ1

ξ2

ξ3

⎤
⎦ +

⎡
⎣ 1

3
0
− 4

3

⎤
⎦u

y = [1 − 4 − 2] [ξ1 ξ2 ξ3]T

66 Let r1 = [r11 r12 r13]T , r2 = [r21 r22 r23]T , r3 = [r31 r32 r33]T be the
reciprocal base vectors to e1 = [1 1 0]T , e2 = [0 1 1]T , e3 = [1 2 3]T .

rT
1 e1 = r11 + r12 = 1

rT
1 e2 = r11 + r13 = 0

rT
1 e3 = r11 + 2r12 + 3r13 = 0

⎫⎬
⎭ ⇒ r1 =

1
2
[1 1 − 1]T

rT
2 e1 = r21 + r22 = 0

rT
2 e2 = r22 + r23 = 1

rT
2 e3 = r21 + 2r22 + 3r23 = 0

⎫⎬
⎭ ⇒ r2 =

1
2
[−3 3 1]T

rT
3 e1 = r31 + r32 = 0

rT
3 e2 = r32 + r33 = 0

rT
3 e3 = r31 + 2r32 + 3r33 = 1

⎫⎬
⎭ ⇒ r3 =

1
2
[1 − 1 1]T

Then using the fact that x(0) = [1 1 1]T

α0 = rT
1 x(0) = − 1

2 , α1 = rT
2 x(0) = 1

2 , α3 = rT
3 x(0) = 1

2

67 The eigenvectors of A are given by∣∣∣∣ 5 − λ 4
1 2 − λ

∣∣∣∣ = (λ − 6)(λ − 1) = 0

so the eigenvalues are λ1 = 6, λ2 = 1. The corresponding eigenvectors are readily
determined as e1 = [4 1]T , e2 = [1 − 1]T .

Taking M to be the modal matrix M =
[

4 1
1 −1

]
then substituting x = Mξξξ

into ẋ = Ax(t) reduces it to the canonical form

ξ̇ξξ = ΛΛΛ ξξξ
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where ΛΛΛ =
[

6 0
0 1

]
. Thus, the decoupled canonical form is

[
ξ̇1

ξ̇2

]
=

[
6 0
0 1

] [
ξ1

ξ2

]
or ξ̇1 = 6ξ1 and ξ̇2 = ξ2

which may be individually solved to give

ξ1 = αe6t and ξ1 = βet

Now ξξξ(0) = M−1x(0) = −1
5

[
−1 −1
−1 4

] [
1
4

]
=

[
1

−3

]
so ξ1(0) = 1 = α and ξ2(0) = −3 = β

giving the solution of the uncoupled system as

ξξξ =
[

e6t

−3et

]

The solution for x(t) as

x = M ξξξ =
[

4 1
1 −1

] [
e6t

−3et

]
=

[
4e6t − 3et

e6t + 3et

]

68 Taking A =
[

3 4
2 1

]
its eigenvalues are λ1 = 5, λ2 = −1 having

corresponding eigenvectors e1 = [2 1]T , e2 = [1 − 1]T .

Let M =
[

2 1
1 −1

]
be the modal matrix of A , then ẋ = M ξξξ reduces the

equation to

ξ̇ξξ(t) =
[

5 0
0 −1

]
ξξξ + M−1

[
0 1
1 1

]
u(t)

Since M−1 =
1

detM
adj M =

1
3

[
1 1
1 −2

]
we have,

ξ̇ξξ(t) =
[

5 0
0 −1

]
ξξξ +

1
3

[
1 2

−2 −1

]
u(t)

With u(t) = [4 3]T the decoupled equations are

ξ̇1 = 5ξ1 +
10
3

ξ̇2 = −ξ2 −
11
3
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which can be solved independently to give

ξ1 = αe5t − 2
3

, ξ2 = βe−t − 11
3

We have that ξξξ(0) = MMM−1x(0) =
1
3

[
1 1
1 −2

] [
1
2

]
=

[
1

−1

]
so

1 = α − 2
3

⇒ α =
5
3

−1 = β − 11
3

⇒ β =
8
3

giving

ξξξ =
[

5
3e5t − 2

3
8
3e−t − 11

3

]

and x = MMM ξξξ =
[

2 1
1 −1

] [
5
3e5t − 2

3
8
3e−t − 11

3

]
=

[
−5 + 8

3e−t + 10
3 e5t

3 − 8
3e−t + 5

3e5t

]
which confirms Exercises 57 and 58.

Exercises 1.11.1 (Lyapunov)

69 Take tentative Lyapunov functionV(x) = xT Px giving

V̇(x) = xT (AT P + PA)x = −xT Qx where

AT P + PA = −Q (i)

Take Q = I so that V̇(x) = −(x2
1 + x2

2) which is negative definite. Substituting in
(i) gives

[
−4 3
2 −2

] [
p11 p12

p12 p22

]
+

[
p11 p12

p12 p22

] [
−4 2
3 −2

]
=

[
−1 0
0 −1

]

Equating elements gives

−8p11 + 6p12 = −1, 4p12 − 4p22 = −1, 2p11 − 6p12 + 3p22 = 0

Solving gives p11 = 5
8 , p12 = 2

3 , p22 = 11
12 so that, P =

[
5
8

2
3

2
3

11
12

]
Principal minors

of P are: 5
8 > 0 and det P = ( 55

96 −
4
9 ) > 0 so P is positive definite and the system

is asymptotically stable
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Note that, in this case, we have V(x) = 5
8x2

1 + 4
3x1x2 + 11

12x2
2 which is positive

definite and V̇(x) = 5
4x1ẋ1 + 4

3 ẋ1x2 + 4
3x1ẋ2 + 11

6 x2ẋ2 = −x2
1−x2

2 which is negative
definite.

70 Take tentative Lyapunov function V(x) = xT Px giving

V̇(x) = xT (AT P + PA)x = −xT Qx where

AT P + PA = −Q
(i)

Take Q = I so that V̇(x) = −(x2
1 + x2

2) which is negative definite. Substituting in
(i) gives

[
−3 −1
2 −1

] [
p11 p12

p12 p22

]
+

[
p11 p12

p12 p22

] [
−3 2
−1 −1

]
=

[
−1 0
0 −1

]

Equating elements gives

−6p11 − 2p12 = −1, 4p12 − 2p22 = −1, 2p11 − 4p12 − p22 = 0

Solving gives p11 = 7
40 , p12 = − 1

40 , p22 = 18
40 so that P =

[
7
40 − 1

40
− 1

40
18
40

]
Principal minors of P are: 7

40 > 0 and det P = 5
64 > 0 so P is positive definite

and the system is asymptotically stable.

71 Take tentative Lyapunov function V(x) = xT Px giving

V̇(x) = xT (AT P + PA)x = −xT Qx where

AT P + PA = −Q (i)

Take Q = I so that V̇(x) = −(x2
1 + x2

2) which is negative definite. Substituting in
(i) gives

[
0 −a
1 −b

] [
p11 p12

p12 p22

]
+

[
p11 p12

p12 p22

] [
0 1
−a −b

]
=

[
−1 0
0 −1

]

Equating elements gives

−8p12 = −1, 2p12 − 2bp22 = −1, p11 − bp12 − ap22 = 0
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Solving gives p12 = 1
2a , p22 = a+1

2ab , p11 = b2+a2+a
2ab so that, P =

[
b2+a2+a

2ab
1
2a

1
2a

a+1
2ab

]
For asymptotic stability the principal minors of P must be positive. Thus,

b2 + a2 + a

2ab
> 0 (ii)

and (b2 + a2 + a)(a + 1) > b2 (iii)

Case 1 ab > 0

(ii) ⇒ a2 + b2 + a > 0 so (iii) ⇒ a + 1 >
b2

b2 + a2 + a

⇒ a[a2 + (a + 1)2] > 0 ⇒ a > 0.

Since ab > 0 ⇒ b > 0 it follows that (ii) and (iii) are satisfied if a, b > 0
Case 2 ab < 0 No solution to (ii) and (iii) in this case.
Thus, system is asymptotically stable when both a > 0 and b > 0.
Note: This example illustrates the difficulty in interpretating results when using
the Lyapunov approach. It is a simple task to confirm this result using the Routh–
Hurwitz criterion developed in Section 5.6.2.

72(a)

ẋ1 = x2 (i)

ẋ2 = −2x2 + x3 (ii)

ẋ3 = −kx1 − x3 (iii)

If V̇(x) is identically zero then x3 is identically zero ⇒ x1 is identically zero from
(iii)

⇒ x2is identically zero from (i)

Hence V̇(x) is identically zero only at the origin.

(b) AT P + PA = −Q ⇒

⎡
⎣ 0 0 −k

1 −2 0
0 1 −1

⎤
⎦

⎡
⎣ p11 p12 p13

p12 p22 p23

p13 p23 p33

⎤
⎦+

⎡
⎣ p11 p12 p13

p12 p22 p23

p13 p23 p33

⎤
⎦

⎡
⎣ 0 1 0

0 −2 1
−k 0 −1

⎤
⎦ =

⎡
⎣ 0 0 0

0 0 0
0 0 −1

⎤
⎦
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Equating elements and solving for the elements of P gives the matrix

P =

⎡
⎣

k2+12k
12−2k

6k
12−2k 0

6k
12−2k

3k
12−2k

k
12−2k

0 k
12−2k

6
12−2k

⎤
⎦

(c) Principal minors of Pare:

Δ1 =
k2 + 12k
12 − 2k

> 0 if k > 0and(12 − 2k) > 0 ⇒ 0 < k < 6

Δ2 =
[
k2 + 12k
12 − 2k

] [
3k

12 − 2k

]
− 36k2

12 − 2k
=

3k3

(12 − 2k)2
> 0 if k > 0

Δ3 =
(k2 + 12k)(8k − k2)

(12 − 2k)3
− 216k2

(12 − 2k)3
> 0if (6k3 − k4) > 0 ⇒ 0 < k < 6

Thus system asymptotically stable for 0 < k < 6.

73 State-space form is

ẋ =
[

ẋ1

ẋ2

]
=

[
0 1
−k −a

] [
x1

x2

]
(i)

Take V(x) = kx2
1 + (x2 + ax1)2 then

V̇(x) = 2kx1ẋ1 + 2(x2 + ax1)(ẋ2 + aẋ1)

= 2kx1(x2) + 2(x2 + ax1)(−kx1 − ax2 + ax1)using (i)

= −2kax2
1

Since k>0 and a>0 then V̇(x) is negative semidefinite but is not identically zero
along any trajectory of (i). Consequently, this choice of Lyapunov function assures
asymptotic stability.

Review Exercises 1.13

1(a) Eigenvalues given by

∣∣∣∣∣∣
−1 − λ 6 12

0 −13 − λ 30
0 −9 20 − λ

∣∣∣∣∣∣ = (1 + λ)[(−13 − λ)(20 − λ) + 270] = 0
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that is, (1 + λ)(λ − 5)(λ − 2) = 0
so eigenvalues are λ1 = 5, λ2 = 2, λ3 = −1
Eigenvectors are given by corresponding solutions of⎡

⎣−1 − λi 6 12
0 −13 − λi 30
0 −9 20 − λi

⎤
⎦

⎡
⎣ ei1

ei2

ei3

⎤
⎦ = 0

When i = 1, λi = 5 and solution given by

e11

198
=

−e12

−90
=

e13

54
= β1

so e1 = [11 5 3]T

When i = 2, λi = 2 and solution given by

e21

216
=

−e22

−54
=

e23

27
= β2

so e2 = [8 2 1]T

When i = 3, λi = −1 and solution given by

e31

1
=

−e32

0
=

e33

0
= β3

so e3 = [1 0 0]T

1(b) Eigenvalues given by∣∣∣∣∣∣
2 − λ 0 1
−1 4 − λ −1
−1 2 0 − λ

∣∣∣∣∣∣ =
∣∣∣∣ 4 − λ −1

2 −λ

∣∣∣∣ +
∣∣∣∣−1 4 − λ
−1 2

∣∣∣∣ = 0

that is, 0 = (2 − λ)[(4 − λ)(−λ) + 2] + [−2 + (4 − λ)]

= (2 − λ)(λ2 − 4λ + 3) = (2 − λ)(λ − 3)(λ − 1) = 0

so eigenvalues are
λ1 = 3, λ2 = 2, λ3 = 1

Eigenvectors are given by the corresponding solutions of

(2 − λi)ei1 + 0ei2 + ei3 = 0

−ei1 + (4 − λi)ei2 − ei3 = 0

−ei1 + 2ei2 − λiei3 = 0
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Taking i = 1, 2, 3 gives the eigenvectors as

e1 = [1 2 1]T , e2 = [2 1 0]T , e3 = [1 0 − 1]T

1(c) Eigenvalues given by

∣∣∣∣∣∣
1 − λ −1 0
−1 2 − λ −1
0 −1 1 − λ

∣∣∣∣∣∣ R1 + (R2 + R3)

∣∣∣∣∣∣
−λ −λ −λ
−1 2 − λ −1
0 −1 1 − λ

∣∣∣∣∣∣ = 0

that is, λ

∣∣∣∣∣∣
−1 −1 −1
−1 2 − λ −1
0 −1 1 − λ

∣∣∣∣∣∣ = λ

∣∣∣∣∣∣
−1 0 0
−1 3 − λ 0
0 −1 1 − λ

∣∣∣∣∣∣ = λ(3 − λ)(1 − λ) = 0

so eigenvalues are λ1 = 3, λ2 = 1, λ3 = 0
Eigenvalues are given by the corresponding solutions of

(1 − λi)ei1 − ei2 − 0ei3 = 0

−ei1 + (2 − λi)ei2 − ei3 = 0

0ei1 − ei2 + (1 − λi)ei3 = 0

Taking i = 1, 2, 3 gives the eigenvectors as

e1 = [1 − 2 1]T , e = [1 0 − 1]T , e3 = [1 1 1]T

2 Principal stress values (eigenvalues) given by

∣∣∣∣∣∣
3 − λ 2 1

2 3 − λ 1
1 1 4 − λ

∣∣∣∣∣∣ R1 + (R2 + R3)

∣∣∣∣∣∣
6 − λ 6 − λ 6 − λ

2 3 − λ 1
1 1 4 − λ

∣∣∣∣∣∣
= (6 − λ)

∣∣∣∣∣∣
1 1 1
2 3 − λ 1
1 1 4 − λ

∣∣∣∣∣∣ = 0

that is, (6 − λ)

∣∣∣∣∣∣
1 0 0
2 1 − λ −1
1 0 3 − λ

∣∣∣∣∣∣ = (6 − λ)(1 − λ)(3 − λ) = 0

so the principal stress values are λ1 = 6, λ2 = 3, λ3 = 1.
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Corresponding principal stress direction e1, e2 and e3 are given by the solutions
of

(3 − λi)ei1 + 2ei2 + ei3 = 0

2ei1 + (3 − λi)ei2 + ei3 = 0

ei1 + ei2 + (4 − λi)ei3 = 0

Taking i = 1, 2, 3 gives the principal stress direction as

e1 = [1 1 1]T, e2 = [1 1 − 2]T, e3 = [1 − 1 0]T

It is readily shown that eT
1 e2 = eT

1 e3 = eT
2 e3 = 0 so that the principal stress

directions are mutually orthogonal.

3 Since [1 0 1]T is an eigenvector of A

⎡
⎣ 2 −1 0
−1 3 b

0 b c

⎤
⎦

⎡
⎣ 1

0
1

⎤
⎦ = λ

⎡
⎣ 1

0
1

⎤
⎦

so 2 = λ,−1 + b = 0, c = λ

giving b = 1 and c = 2.
Taking these values A has eigenvalues given by∣∣∣∣∣∣

2 − λ −1 0
−1 3 − λ 1
0 1 2 − λ

∣∣∣∣∣∣ = (2 − λ)
∣∣∣∣ 3 − λ 1

1 2 − λ

∣∣∣∣ − (2 − λ)

= (2 − λ)(λ − 1)(λ − 4) = 0

that is, eigenvalues are λ1 = 4, λ2 = 2, λ3 = 1
Corresponding eigenvalues are given by the solutions of

(2 − λi)ei1 − ei2 + 0ei3 = 0

−ei1 + (3 − λi)ei2 + ei3 = 0

0ei1 + ei2 + (2 − λi)ei3 = 0

Taking i = 1, 2, 3 gives the eigenvectors as

e1 = [1 − 2 − 1]T , e2 = [1 0 1]T , e3 = [1 1 − 1]T
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4 The three Gerschgorin circles are

| λ − 4 | =| −1 | + | 0 |= 1

| λ − 4 | =| −1 | + | −1 |= 2

| λ − 4 | = 1

Thus, | λ − 4 |≤ 1 and | λ − 4 |≤ 2 so | λ − 4 |≤ 2 or 2 ≤ λ ≤ 6.
Taking x(o) = [−1 1 − 1]T iterations using the power method may be tabulated
as follows

Iteration k 0 1 2 3 4 5 6
−1 −0.833 −0.765 −0.734 −0.720 −0.713 −0.710

x(k) 1 1 1 1 1 1 1
−1 −0.833 −0.765 −0.734 −0.720 −0.713 −0.710
−5 −4.332 −4.060 −3.936 −3.88 −3.852

A x(k) 6 5.666 5.530 5.468 5.44 5.426
−5 −4.332 −4.060 −3.936 3.88 −3.852

λ � 6 5.666 5.530 5.468 5.44 5.426

Thus, correct to one decimal place the dominant eigenvalue is λ = 5.4

5(a) Taking xxx (o) = [1 1 1]7 iterations may be tabulated as follows

Iteration k 0 1 2 3 4 5 6 7
1 0.800 0.745 0.728 0.722 0.720 0.719 0.719

x(k) 1 0.900 0.862 0.847 0.841 0.838 0.837 0.837
1 1 1 1 1 1 1 1
4 3.500 3.352 3.303 3.285 3.278 3.275

A x(k) 4.5 4.050 3.900 3.846 3.825 3.815 3.812
5 4.700 4.607 4.575 4.563 4.558 4.556

λ � 5 4.700 4.607 4.575 4.563 4.558 4.556

Thus, estimate of dominant eigenvalues is λ � 4.56 with associated eigenvector
x = [0.72 0.84 1]T

5(b)
∑3

i=1 λi = trace A ⇒ 7.5 = 4.56 + 1.19 + λ3 ⇒ λ3 = 1.75
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5(c) (i) detA =
3∏

i=1

λi = 9.50 so A−1 exists and has eigenvalues

1
1.19

,
1

1.75
,

1
4.56

so power method will generate the eigenvalue 1.19 corresponding to A .

(ii) A − 3I has eigenvalues

1.19 − 3, 1.75 − 3, 4.56 − 3

that is,−1.91, −1.25, 1.56

so applying the power method on A− 3I generates the eigenvalues corresponding
to 1.75 of A .

6 ẋ = αλeλt, ẏ = βλeλt, ż = γλeλt so the differential equations become

αλeλt = 4αeλt + βeλt + γeλt

βλeλt = 2αeλt + 5βeλt + 4γeλt

γλeλt = −αeλt − βeλt

Provided eλt �= 0 (i.e. non-trivial solution) we have the eigenvalue problem

⎡
⎣ 4 1 1

2 5 4
−1 −1 0

⎤
⎦

⎡
⎣α

β
γ

⎤
⎦ = λ

⎡
⎣α

β
γ

⎤
⎦

Eigenvalues given by∣∣∣∣∣∣
4 − λ 1 1

2 5 − λ 4
−1 −1 0

∣∣∣∣∣∣ C2−C3

∣∣∣∣∣∣
4 − λ 0 1

2 1 − λ 4
−1 λ − 1 −λ

∣∣∣∣∣∣ = (λ − 1)

∣∣∣∣∣∣
4 − λ 0 1

2 −1 4
−1 1 −λ

∣∣∣∣∣∣
= −(λ − 1)(λ − 5)(λ − 3)

so its eigenvalues are 5, 3 and 1.
When λ = 1 the corresponding eigenvector is given by

3e11 + e12 + e13 = 0

2e11 + 4e12 + 4e13 = 0

−e11 − e12 − e13 = 0
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having solution
e11

0
=

−e12

2
=

e13

2
= β1

Thus, corresponding eigenvector is β[0 − 1 1]T

7 Eigenvalues are given by

| A− λI | =

∣∣∣∣∣∣
8 − λ −8 −2

4 −3 − λ −2
3 −4 1 − λ

∣∣∣∣∣∣ = 0

Row 1 − (Row 2 + Row 3) gives

| A− λI | =

∣∣∣∣∣∣
1 − λ −1 + λ −1 + λ

4 −3 − λ −2
3 −4 1 − λ

∣∣∣∣∣∣ = (1 − λ)

∣∣∣∣∣∣
1 −1 −1
4 −3 − λ −2
3 −4 1 − λ

∣∣∣∣∣∣
= (1 − λ)

∣∣∣∣∣∣
1 0 0
4 1 − λ 2
3 −1 4 − λ

∣∣∣∣∣∣ = (1 − λ)[(1 − λ)(4 − λ) + 2]

= (1 − λ)(λ − 2)(λ − 3)

Thus, eigenvalues are λ1 = 3, λ2 = 2, λ3 = 1.
Corresponding eigenvectors are given by

(8 − λ)ei1 − 8ei2 − 2ei3 = 0

4ei1 − (3 + λ)ei2 − 2ei3 = 0

3ei1 − 4ei2 + (1 − λ)ei3 = 0

When i = 1, λi = λ1 = 3 and solution given by

e11

4
=

−e12

−2
=

e13

2
= β1

so a corresponding eigenvector is e1 = [2 1 1]T .
When i = 2, λi = λ2 = 2 and solution given by

e21

−3
=

−e22

2
=

e23

−1
= β2

so a corresponding eigenvector is e2 = [3 2 1]T .
When i = 3, λi = λ3 = 1 and solution given by

e31

−8
=

−e32

6
=

e33

−4
= β3
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so a corresponding eigenvector is e3 = [4 3 2]T .
Corresponding modal and spectral matrices are

M =

⎡
⎣ 2 3 4

1 2 3
1 1 2

⎤
⎦ and Λ =

⎡
⎣ 3 0 0

0 2 0
1 0 1

⎤
⎦

M−1 =

⎡
⎣ 1 −2 1

1 0 −2
−1 1 1

⎤
⎦ and matrix multiplication confirms M−1 A M = Λ

8 Eigenvectors of A are given by∣∣∣∣∣∣
1 − λ 0 −4

0 5 − λ 4
−4 4 3 − λ

∣∣∣∣∣∣ = 0

that is, λ3 − 9λ2 − 9λ + 81 = (λ − 9)(λ − 3)(λ + 3) = 0
so the eigenvalues are λ1 = 9, λ2 = 3 and λ3 = −3.
The eigenvectors are given by the corresponding solutions of

(1 − λi)ei1 + 0ei2 − 4ei3 = 0

0ei1 + (5 − λi)ei2 + 4ei3 = 0

−4ei1 + 4ei2 + (3 − λi)ei3 = 0

Taking i = 1, 2, 3 the normalized eigenvectors are given by

ê1 = [13
−2
3

−2
3 ]T , ê2 = [23

2
3

−1
3 ]T , ê3 = [23

−1
3

2
3 ]T

The normalised modal matrix

M̂ =
1
3

⎡
⎣ 1 2 2
−2 2 −1
−2 −1 2

⎤
⎦

so

M̂T A M̂ =
1
9

⎡
⎣ 1 −2 −2

2 2 −1
2 −1 2

⎤
⎦

⎡
⎣ 1 0 −4

0 5 4
−4 4 3

⎤
⎦

⎡
⎣ 1 2 2
−2 2 −1
−2 −1 2

⎤
⎦

=

⎡
⎣ 9 0 0

0 3 0
0 0 −3

⎤
⎦ = Λ
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9 Ṅ =

⎡
⎢⎣
−6 0 0 0

6 −4 0 0
0 4 −2 0
0 0 2 0

⎤
⎥⎦ N, N = [N1 N2 N3 N4]T

Since the matrix A is a triangular matrix its eigenvalues are the diagonal elements.
Thus, the eigenvalues are

λ1 = −6, λ2 = −4, λ3 = −2, λ4 = 0

The eigenvectors are the corresponding solutions of

(−6 − λi)ei1 + 0ei2 + 0ei3 + 0ei4 = 0

6ei1 + (−4 − λi)ei2 + 0ei3 + 0ei4 = 0

0ei1 + 4ei2 + (−2 − λi)ei3 + 0ei4 = 0

0ei1 + 0ei2 + 2ei3 − λiei4 = 0

Taking i = 1, 2, 3, 4 and solving gives the eigenvectors as

e1 = [1 − 3 3 − 1]T , e2 = [0 1 − 2 1]T

e3 = [0 0 1 − 1]T , e4 = [0 0 0 1]T

Thus, spectral form of solution to the equation is

N = αe−6te1 + βe−4te2 + γe−2te3 + δe4

Using the given initial conditions at t = 0 we have

⎡
⎢⎣

C
0
0
0

⎤
⎥⎦ = α

⎡
⎢⎣

1
−3

3
−1

⎤
⎥⎦ + β

⎡
⎢⎣

0
1

−2
1

⎤
⎥⎦ + γ

⎡
⎢⎣

0
0
1

−1

⎤
⎥⎦ + δ

⎡
⎢⎣

0
0
0
1

⎤
⎥⎦

so C = α, 0 = −3α + β, 0 = 3α − 2β + γ, 0 = −α + β − γ + δ

which may be solved for α, β, γ and δ to give

α = C, β = 3C, γ = 3C, δ = C

Hence,
N4 = −αe−6t + βe−4t − γe−2t + δ

= −Ce−6t + 3Ce−4t − 3Ce−2t + C
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10(a)

(i) Characteristic equation of A is λ2 − 3λ + 2 = 0 so by the Cayley–Hamilton
theorem

A2 = 3A − 2I =
[

4 0
3 1

]

A3 = 3(3A − 2I) − 2A = 7A − 6I =
[

8 0
7 1

]

A4 = 7(3A − 2I) − 6A = 15A − 14I =
[

16 0
15 1

]

A5 = 15(3A − 2I|) − 14A = 31A − 30I =
[

32 0
31 1

]

A6 = 31(3A − 2I) − 30A = 63A − 62I =
[

64 0
63 1

]

A7 = 63(3A − 2I) − 62A = 127A − 126I =
[

128 0
127 1

]

Thus, A7 − 3A6 + A4 + 3A3 − 2A2 + 3I =
[
−29 0
−32 3

]

(ii) Eigenvalues of A are λ1 = 2, λ2 = 1. Thus,

Ak = α0I + α1A where α0 and α1 satisfy

2k = α0 + 2α1, 1 = α0 + α1

α1 = 2k − 1, α0 = 2 − 2k

Thus, Ak =
[

α0 + 2α1 0
α1 α0 + α1

]
=

[
2k 0

2k − 1 1

]

10(b) Eigenvalues of A are λ1 = −2, λ2 = 0. Thus,

eAt = α0I + α1A where α0 and α1 satisfy

e−2t = α0 − 2α1, 1 = α0 ⇒ α0 = 1, α1 =
1
2
(1 − e−2t)

Thus, eAt =
[

α0 α1

0 α0 − 2α1

]
=

[
1 1

2 (1 − e−2t)
0 e−2t

]
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11 The matrix A =

⎡
⎣ 1 2 3

0 1 4
0 0 1

⎤
⎦ has the single eigenvalue λ = 1 (multiplicity 3)

(A − I) =

⎡
⎣ 0 2 3

0 0 4
0 0 0

⎤
⎦ ∼

⎡
⎣ 0 1 0

0 0 1
0 0 0

⎤
⎦ is of rank 2 so has nullity 3 − 2 = 1

indicating that there is only one eigenvector corresponding to λ = 1.

This is readily determined as

e1 = [1 0 0]T

The corresponding Jordan canonical form comprises a single block so

J =

⎡
⎣ 1 1 0

0 1 1
0 0 1

⎤
⎦

Taking T = A − I the triad of vectors (including generalized eigenvectors) has

the form {T2ω, T ω, ω} with T2ω = e1 . Since T2 =

⎡
⎣ 0 0 8

0 0 0
0 0 0

⎤
⎦ , we may take

ω = [0 0 1
8 ]T . Then, T ω = [28

1
8 0]T . Thus, the triad of vectors is

e1 = [1 0 0]T , e∗1 = [38
1
2 0]T , e∗∗1 = [0 0 1

8 ]T

The corresponding modal matrix is

M =

⎡
⎣ 1 3

8 0
0 1

2 0
0 0 1

8

⎤
⎦

M−1 = 16

⎡
⎣ 1

16 − 3
64 0

0 1
8 0

0 0 1
2

⎤
⎦ and by matrix multiplication

M−1 A M = 16

⎡
⎣ 1

16 − 3
64 0

0 1
8 0

0 0 1
2

⎤
⎦

⎡
⎣ 1 2 3

0 1 4
0 0 1

⎤
⎦

⎡
⎣ 1 3

8 0
0 1

2 0
0 0 1

8

⎤
⎦

=

⎡
⎣ 1 1 0

0 1 1
0 0 1

⎤
⎦ = J
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12 Substituting x = X cos ωt, y = Y cos ωt, z = Z cos ωt gives

−ω2X = −2X + Y

−ω2Y = X − 2Y + Z

−ω2Z = Y − 2Z

or taking λ = ω2

(λ − 2)X + Y = 0

X + (λ − 2)Y + Z = 0

Y + (λ − 2)Z = 0

For non-trivial solution ∣∣∣∣∣∣
λ − 2 1 0

1 λ − 2 1
0 1 λ − 2

∣∣∣∣∣∣ = 0

that is, (λ − 2)[(λ − 2)2 − 1] − (λ − 2) = 0

(λ − 2)(λ2 − 4λ + 2) = 0

so λ = 2 or λ = 2 ±
√

2

When λ = 2 , Y = 0 and X = −Z so X : Y : Z = 1 : 0 : −1
When λ = 2 +

√
2 , X = Z and Y = −

√
2X so X : Y : Z = 1 : −

√
2 : 1

When λ = 2 −
√

2 , X = Z and Y =
√

2X so X : Y : Z = 1 :
√

2 : 1

13 In each section A denotes the matrix of the quadratic form.

13(a) A =

⎡
⎣ 2 −1 0
−1 1 −1

0 −1 2

⎤
⎦ has principal minors of 2,

∣∣∣∣ 2 −1
−1 1

∣∣∣∣ = 1 and

detA = 0
so by Sylvester’s condition (c) the quadratic form is positive-semidefinite.

13(b) A =

⎡
⎣ 3 −2 −2
−2 7 0
−2 0 2

⎤
⎦ has principal minors of 3,

∣∣∣∣ 3 −2
−2 7

∣∣∣∣ = 17 and

detA = 6
so by Sylvester’s condition (a) the quadratic form is positive-definite.
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13(c) A =

⎡
⎣ 16 16 16

16 36 8
16 8 17

⎤
⎦ has principal minors of 16,

∣∣∣∣ 16 16
16 36

∣∣∣∣ = 320 and

detA = −704

so none of Sylvester’s conditions are satisfied and the quadratic form is indefinite.

13(d) A =

⎡
⎣−21 15 −6

15 −11 4
−6 4 −2

⎤
⎦ has principal minors of −21,

∣∣∣∣−21 15
15 −11

∣∣∣∣ = 6

and detA = 0

so by Sylvester’s condition (d) the quadratic form is negative-semidefinite.

13(e) A =

⎡
⎣−1 1 1

1 −3 1
1 1 −5

⎤
⎦ has principal minors of −1,

∣∣∣∣−1 1
1 −3

∣∣∣∣ = 2 and

detA = −4 so by Sylvester’s condition (b) the quadratic form is negative-definite.

14 A e1 =

⎡
⎣ 7

2 − 1
2 − 1

2
4 −1 0
− 3

2
3
2

1
2

⎤
⎦

⎡
⎣ 1

2
3

⎤
⎦ =

⎡
⎣ 1

2
3

⎤
⎦

Hence, e1 = [1 2 3]T is an eigenvector with λ1 = 1 the corresponding eigenvalue.

Eigenvalues are given by

0 =

∣∣∣∣∣∣
− 7

2 − λ − 1
2 − 1

2
4 −1 − λ 0
− 3

2
3
2

1
2 − λ

∣∣∣∣∣∣ = −λ3 + 3λ2 + λ − 3

= (λ − 1)(λ2 + 2λ + 3)

= −(λ − 1)(λ − 3)(λ + 1)

so the other two eigenvalues are λ2 = 3, λ3 = −1.

Corresponding eigenvectors are the solutions of

(− 7
2 − λi)ei1 − 1

2ei2 − 1
2ei3 = 0

4ei1 − (1 + λi)ei2 + 0ei3 = 0

− 3
2ei1 + 3

2ei2 + ( 1
2 − λi)ei3 = 0
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Taking i = 2, 3 gives the eigenvectors as

e2 = [1 1 0]T , e3 = [0 − 1 1]T

The differential equations can be written in the vector–matrix form

ẋ = A x , x = [x y z]T

so, in special form, the general solution is

x = αeλ1te1 + βeλ2te2 + γeλ3te3

= αet

⎡
⎣ 1

2
3

⎤
⎦ + βe3t

⎡
⎣ 1

1
0

⎤
⎦ + γe−t

⎡
⎣ 0
−1
1

⎤
⎦

With x(0) = 2, y(0) = 4, z(0) = 6 we have

α = 2, β = 0, γ = 0

so

x = 2et

⎡
⎣ 1

2
3

⎤
⎦

that is, x = 2et, y = 4et, z = 6et .

15(a)

AAT =
[

1.2 0.9 −4
1.6 1.2 3

] ⎡
⎣ 1.2 1.6

0.9 1.2
−4 3

⎤
⎦ =

[
18.25 −9
−9 13

]

Eigenvalues λi given by

(18.25 − λ)(13 − λ) − 81 = 0 ⇒ (λ − 25)(λ − 6.25) = 0

⇒ λ1 = 25, λ2 = 6.25

having corresponding eigenvectors

u1 = [−4 3 ]T ⇒ û1 = [− 4
5

3
5 ]T

u2 = [ 3 4 ]T ⇒ û2 = [ 3
5

4
5 ]
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leading to the orthogonal matrix

Û =
[
− 4

5
3
5

3
5

4
5

]

AT A =

⎡
⎣ 1.2 1.6

0.9 1.2
−4 3

⎤
⎦[

1.2 0.9 −4
1.6 1.2 3

]
=

⎡
⎣ 4 3 0

3 2.25 0
0 0 25

⎤
⎦

Eigenvalues μi given by

(25 − μ) [(4 − μ)(2.25 − μ) − 9] = 0 ⇒ (25 − μ)μ(μ − 6.25) = 0

⇒ μ1 = 25, μ2 = 6.25, μ3 = 0

with corresponding eigenvalues

v1 = v̂1 = [ 0 0 1 ]T

v2 = [ 4 3 0 ]T ⇒ v̂2 = [ 4
5

3
5 0 ]T

v3 = [−3 4 0 ]T ⇒ v̂3 = [− 3
5

4
5 0 ]T

leading to the orthogonal matrix

V̂ =

⎡
⎣ 0 4

5 − 3
5

0 3
5

4
5

1 0 0

⎤
⎦

The singular values of A are σ1 =
√

25 = 5 and σ2 =
√

6.25 = 2.5 so that

Σ =
[

5 0 0
0 2.5 0

]
giving the SVD form of A as

A = ÛΣV̂
T

=
[
−0.8 0.6
0.6 0.8

] [
5 0 0
0 2.5 0

] ⎡
⎣ 0 0 1

0.8 0.6 0
−0.6 0.8 0

⎤
⎦

(Direct multiplication confirms A =
[

1.2 0.9 −4
1.6 1.2 3

]
)

c©Pearson Education Limited 2011



78 Glyn James, Advanced Modern Engineering Mathematics, 4th Edition

(b) A† = V̂Σ
∗
ÛT =

⎡
⎣ 0 4

5 − 3
5

0 3
5

4
5

1 0 0

⎤
⎦

⎡
⎣ 1

5 0
0 2

5
0 0

⎤
⎦[

− 4
5

3
5

3
5

4
5

]
= 1

125

⎡
⎣ 24 32

18 24
−20 15

⎤
⎦

=

⎡
⎣ 0.192 0.256

0.144 0.192
−0.16 0.12

⎤
⎦

AA† = I
CHECK

LHS = 1
125

[
1.2 0.9 −4
1.6 1.2 1

]⎡
⎣ 24 32

18 24
−24 15

⎤
⎦ = 1

125

[
125 0
0 125

]
= I = RHS

(c) Since A is of full rank 2 and there are more columns than rows

A† = AT (AAT )−1 =

⎡
⎣ 1.2 1.6

0.9 1.2
−4 3

⎤
⎦[

18.25 −9
−9 13

]−1

= 1
156.25

⎡
⎣ 1.2 1.6

0.9 1.2
−4 3

⎤
⎦[

13 9
9 18.25

]

= 1
156.25

⎡
⎣ 30 40

22.5 30
−25 18.25

⎤
⎦ =

⎡
⎣ 0.192 0.256

0.144 0.192
−0.16 0.12

⎤
⎦

which checks with the answer in (b).

16 (a) Using partitioned matrix multiplication the SVD form of A may be
expressed in the
form

A = ÛΣV̂
T

= [ Ûr Ûm−r ]
[
S 0
0 0

] [
V̂T

r

V̂T
n−r

]
= ÛrSV̂

T

r

(b) Since the diagonal elements in S are non-zero the pseudo inverse may be expressed

in the form

A† = V̂Σ
∗
ÛT = V̂rS−1ÛT

r

(c) From the solution to Q46, exercises 1.8.4, the matrix A =

⎡
⎣ 1 −1
−2 2
2 −2

⎤
⎦ has a single

singularity σ1 =
√

18 so r = 1 and S is a scalar
√

18; Ûr = Û1 = û1 = [ 1
3 − 2

3
2
3 ]T

and

V̂r = V̂1 = v̂1 =
[ 1√

2
− 1√

2

]T
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The SVD form of A is

A = û1Sv̂T
1 =

⎡
⎣ 1

3
− 2

3
2
3

⎤
⎦√

18
[ 1√

2
− 1√

2

]

with direct multiplication confirming A =

⎡
⎣ 1 −1
−2 2
2 −2

⎤
⎦

Thus, the pseudo inverse is

A† = v̂1S
−1ûT

1 =

[
1√
2

− 1√
2

]
1√
18

[ 1
3 − 2

3
2
3 ] =

[
1
6

− 1
6

]
[ 1

3 − 2
3

2
3 ]

= 1
18

[
1 −2 2
−1 2 −2

]

which agrees with the answer obtained in Q46, Exercises 1.8.4

17 ẋ = A x + bu , y = cT x

Let λi, ei, i = 1, 2, . . . , n, be the eigenvalues and corresponding eigenvectors of A .

Let M = [e1, e2, . . . , en] then since λi ’s are distinct the ei ’s are linearly
independent and M−1 exists. Substituting x = M ξξξ gives

M ξ̇ξξ = A M ξξξ + bu

Premultiplying by M−1 gives

ξ̇ξξ = M−1 A M ξξξ + M−1 bu = Λ ξξξ + b1u

where Λ = M−1 A M = (λiδij), i, j = 1, 2, . . . , n, and b1 = M−1b

Also, y = cT x ⇒ y = cT Mξξξ = cT
1 ξξξ, cT

1 = cT M . Thus, we have the desired
canonical form.

If the vector b1 contains a zero element then the corresponding mode is
uncontrollable and consequently (A1 b1 c) is uncontrollable. If the matrix cT

has a zero element then the system is unobservable.

The eigenvalues of A are λ1 = 2, λ2 = 1, λ3 = −1 having corresponding
eigenvectors e1 = [1 3 1]T , e2 = [3 2 1]T and e3 = [1 0 1]T .
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The modal matrix

M = [e1 e2 e3] =

⎡
⎣ 1 3 1

3 2 0
1 1 1

⎤
⎦ with M−1 = −1

6

⎡
⎣ 2 −2 −2
−3 0 3
1 2 −7

⎤
⎦

so canonical form is⎡
⎣ ξ̇1

ξ̇2

ξ̇3

⎤
⎦ =

⎡
⎣ 2 0 0

0 1 0
0 0 −1

⎤
⎦

⎡
⎣ ξ1

ξ2

ξ3

⎤
⎦ +

⎡
⎣ 1

3
0
− 4

3

⎤
⎦u

y = [1 − 4 − 2][ξ1 ξ2 ξ3]T

We observe that the system is uncontrollable but observable. Since the system
matrix A has positive eigenvalues the system is unstable. Using Kelman matrices

(i) A2 =

⎡
⎣ 0 1 1
−3 4 3
−1 1 2

⎤
⎦ , A b =

⎡
⎣ 2

2
2

⎤
⎦ , A2 b =

⎡
⎣ 0

4
0

⎤
⎦

Thus, [b A b A2 b] =

⎡
⎣−1 2 0

1 2 4
−1 2 0

⎤
⎦ ∼

⎡
⎣ 1 0 0

0 1 0
0 0 0

⎤
⎦ and is of rank 2

so the system is uncontrollable.

(ii) [c AT c (AT )2c] =

⎡
⎣−2 −3 −3

1 0 2
0 5 1

⎤
⎦ ∼

⎡
⎣ 0 0 1

1 0 0
0 1 0

⎤
⎦ and is of full rank 3

so the system is observable.

18 Model is of form ẋ = Ax+Bu and making the transformation x = Mzgives

Mż = AMz + Bu ⇒ ż = M−1AMz + M−1Bu ⇒ ż = Λz + M−1Bu

where M and Λ are respectively the modal and spectral matrices ofA .
The eigenvalues of A are given by

∣∣∣∣∣∣
−2 − λ −2 0

0 −λ 1
0 −3 −4 − λ

∣∣∣∣∣∣ = 0 ⇒ −(2 − λ)(4λ + λ2 + 3) = 0

⇒ (λ + 2)(λ + 1)(λ + 3) = 0

⇒ λ1 − 1, λ2 = −2, λ3 = −3
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with corresponding eigenvectors

e1 = [−2 1 −2 ]T , e2 = [ 1 0 0 ]T and e3 = [−2 −1 3 ]T

Thus, the modal and spectral matrices are

M =

⎡
⎣−2 1 −2

1 0 −4
−1 0 −1

⎤
⎦ andΛ =

⎡
⎣−1 0 0

0 −2 0
0 0 −3

⎤
⎦

and detM = −2 ⇒ M−1 =

⎡
⎣ 0 3

2
1
2

1 4 2
0 1

2
1
2

⎤
⎦ ⇒ M−1B =

⎡
⎣ 0 3

2
1
2

1 4 2
0 1

2
1
2

⎤
⎦

⎡
⎣ 1 0

0 1
1 1

⎤
⎦

=

⎡
⎣ 1

2 2
3 6
1
2 1

⎤
⎦ leading to the canonical form

ż =

⎡
⎣ ż1

ż2

ż3

⎤
⎦ =

⎡
⎣−1 0 0

0 −2 0
0 0 −3

⎤
⎦

⎡
⎣ z1

z2

z3

⎤
⎦ +

⎡
⎣ 1

2 2
3 6
1
2 1

⎤
⎦[

u1

u2

]

From (1.99a) the solution is given by

⎡
⎣ z1

z2

z3

⎤
⎦ =

⎡
⎣ e−t 0 0

0 e−2t 0
0 0 e−3t

⎤
⎦

⎡
⎣ z1(0)

z2(0)
z3(0)

⎤
⎦ +

∫ t

0

⎡
⎣ e−(t−τ) 0 0

0 e−2(t−τ) 0
0 0 e−3(t−τ)

⎤
⎦

⎡
⎣ 1

2 2
3 6
1
2 1

⎤
⎦[

τ
1

]
dτ

with z(0) = M−1x(0) =

⎡
⎣ 0 3

2
1
2

1 4 2
0 1

2
1
2

⎤
⎦

⎡
⎣ 10

5
2

⎤
⎦ = [ 17

2 34 7
2 ]T . Thus,

z =

⎡
⎣ 17

2 et

34e−2t

7
2e−3t

⎤
⎦ +

∫ t

0

⎡
⎣ (2 + 1

2τ)e−(t−τ)

(6 + 3τ)e−2(t−τ)

(1 + 1
2τ)e−3(t−τ)

⎤
⎦ dτ ⇒ z =

⎡
⎣ 17

2 et

34e−2t

7
2e−3t

⎤
⎦

+

⎡
⎣ 1

2 t + 3
2 − 3

2e−t

3
2 t + 9

4 − 9
4e−2t

1
6 t + 5

18 − 5
18e−3t

⎤
⎦ ⇒ z =

⎡
⎣ 1

2 t + 3
2 + 7e−t

3
2 t + 9

4 − 127
4 e−2t

1
6 t + 5

18 + 29
9 e−3t

⎤
⎦
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giving x = Mz =

⎡
⎣−2 1 −2

1 0 −1
−1 0 3

⎤
⎦

⎡
⎣ 1

2 t + 3
2 + 7e−t

3
2 t + 9

4 − 127
4 e−2t

1
6 t + 5

18 + 29
9 e−3t

⎤
⎦

⇒ x(t) =

⎡
⎣−14e−t + 127

4 e−2t − 58
9 e−3t + 1

6 t − 47
36

7e−t − 29
9 e−3t + 1

3 t + 11
9

−7e−t + 29
3 e−3t − 2

3

⎤
⎦

19(a) Eigenvalues of the matrix given by

0 =

∣∣∣∣∣∣
5 − λ 2 −1

3 6 − λ −9
1 1 1 − λ

∣∣∣∣∣∣ C1−C2

∣∣∣∣∣∣
3 − λ 2 −1
−3 + λ 6 − λ −9

0 1 1 − λ

∣∣∣∣∣∣
= (3 − λ)

∣∣∣∣∣∣
1 2 −1
0 8 − λ −10
0 1 1 − λ

∣∣∣∣∣∣
= (3 − λ)(λ2 − 9λ + 18) = (3 − λ)(λ − 3)(λ − 6)

so the eigenvalues are λ1 = 6, λ2 = λ3 = 3

When λ = 3,A − 3I =

⎡
⎣ 2 2 −1

3 3 −9
1 1 −2

⎤
⎦ ∼

⎡
⎣ 0 0 1

1 0 0
0 0 0

⎤
⎦ is of rank 2

so there is only 3 − 2 = 1 corresponding eigenvectors.
The eigenvector corresponding to λ1 = 6 is readily determined as e1 = [3 2 1]T .
Likewise the single eigenvector corresponding to λ2 = 6 is determined as

e2 = [1 −1 0]T

The generalized eigenvector e∗2 determined by

(A− 2I)e∗2 = e2

or 3e∗21 + 2e∗22 − e∗23 = 1

3e∗21 + 3e∗22 − 9e∗23 = −1

e∗21 + e∗22 − 2e∗23 = 0

giving e∗2 = [ 1
3

1
3

1
3 ]T .

For convenience, we can take the two eigenvectors corresponding to λ = 3 as

e2 = [3 − 3 0]T, e∗2 = [1 1 1]T
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The corresponding Jordan canonical form being J =

⎡
⎣ 6 0 0

0 3 1
0 0 3

⎤
⎦

19(b) The generalised modal matrix is then

M =

⎡
⎣ 3 −3 1

2 −3 1
1 0 1

⎤
⎦

A M =

⎡
⎣ 5 2 −1

3 6 −9
1 1 1

⎤
⎦

⎡
⎣ 3 −3 1

2 −3 1
1 0 1

⎤
⎦ =

⎡
⎣ 18 9 6

12 −9 0
6 0 3

⎤
⎦

M J =

⎡
⎣ 3 3 1

2 −3 1
1 0 1

⎤
⎦

⎡
⎣ 6 0 0

0 3 1
0 0 3

⎤
⎦ =

⎡
⎣ 13 9 6

12 −9 0
6 0 3

⎤
⎦

so A M = M J

19(c) M−1 = −1
9

⎡
⎣−3 −3 6
−1 2 −1

3 3 −15

⎤
⎦ , eJt =

⎡
⎣ e6t 0 0

0 e3t te3t

0 0 e3t

⎤
⎦

so

x(t) = −1
9

⎡
⎣ 3 3 1

2 −3 1
1 0 1

⎤
⎦

⎡
⎣ e6t 0 0

0 e3t te3t

0 0 e3t

⎤
⎦

⎡
⎣−3 −3 6
−1 2 −1

3 3 −15

⎤
⎦

⎡
⎣ 0

1
0

⎤
⎦

=
1
9

⎡
⎣ 9e6t − 9(1 + t)e3t

6e6t + (3 + 9t)e3t

3e6t − 3e3t

⎤
⎦

20 Substituting x = eλtu , where u is a constant vector, in x = A x gives

λ2u = A u or (A− λ2I)u = 0 (1)

so that there is a non-trivial solution provided

| A− λ2I |= 0 (2)
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If λ2
1, λ

2
2, . . . , λ

2
n are the solutions of (2) and u1,u2, . . . ,un the corresponding

solutions of (1) define

M = [u1 u2 . . . un] and S = diag (λ2
1 λ2

2 . . . λ2
n)

Applying the transformation x = M q , q = [q1 q2 . . . qn] gives

M q̈ = A M q

giving q̈ = M−1 A M q provided u1, u2, . . . , un are linearly independent

so that q̈ = S q since M−1 A M = S

This represents n differential equations of the form

q̈i = λ2
i qi , i = 1, 2, . . . , n

When λ2
i < 0 this has the solution of the form

qi = Ci sin(ωit + αi)

where Ci and αi are arbitrary constants and λi = jωi

The given differential equations may be written in the vector–matrix form

ẋ =
[

ẍ1

ẍ2

]
=

[
−3 2
1 −2

] [
x1

x2

]

which is of the above form
ẍ = A x

0 =| A − λ2I | gives (λ2)2 + 5(λ2) + 4 = 0 or λ2
1 = −1, λ2

2 = −4.
Solving the corresponding equation

(A− λ2
i I) ui = 0

we have that u1 = [1 1]T and u2 = [2 − 1]T . Thus, we take

M =
[

1 2
1 −1

]
and S =

[
−1 0

0 −4

]

The normal modes of the system are given by[
q̈1

q̈2

]
=

[
−1 0

0 −4

] [
q1

q2

]
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giving
q1(t) = C1 sin(t + α1) ≡ γ1 sin t + β1 cos t

q2(t) = C2 sin(2t + α2) ≡ γ2 sin 2t + β2 cos 2t

Since x = M q we have that q(0) = M−1x(0) = −1
3

[
−1 −2
−1 1

] [
1
2

]
=

[
5
3

− 1
3

]
also q̇(0) = M−1ẋ(0) so that q̇1(0) = 2 and q̇2(0) = 0
Using these initial conditions we can determine γ1, β1, γ2 and β2 to give

q1(t) =
5
3

cos t + 2 sin t

q2(t) = −1
3

cos 2t

The general displacements x1(t) and x2(t) are then given by x = M q so

x1 = q1 + 2q2 =
5
3

cos t + 2 sin t − 2
3

cos 2t

x2 = q1 − q2 =
5
3

cos t + 2 sin t − 1
3

cos 2t
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