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PREFACE

This manual is offered as an aid in using the fourth edition of Introduction to Real
Analysis as a text. Both of us have frequently taught courses from the earlier
editions of the text and we share here our experience and thoughts as to how to
use the book. We hope our comments will be useful.

We also provide partial solutions for almost all of the exercises in the book.
Complete solutions are almost never presented here, but we hope that enough is
given so that a complete solution is within reach. Of course, there is more than
one correct way to attack a problem, and you may find better proofs for some of
these exercises.

We also repeat the graphs that were given in the manual for the previous
editions, which were prepared for us by Professor Horacio Porta, whom we wish
to thank again.

Robert G. Bartle November 20, 2010
Donald R. Sherbert
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CHAPTER 1

PRELIMINARIES

We suggest that this chapter be treated as review and covered quickly, without
detailed classroom discussion. For one reason, many of these ideas will be already
familiar to the students — at least informally. Further, we believe that, in practice,
those notions of importance are best learned in the arena of real analysis, where
their use and significance are more apparent. Dwelling on the formal aspect of
sets and functions does not contribute very greatly to the students’ understanding
of real analysis.

If the students have already studied abstract algebra, number theory or com-
binatorics, they should be familiar with the use of mathematical induction. If not,
then some time should be spent on mathematical induction.

The third section deals with finite, infinite and countable sets. These notions
are important and should be briefly introduced. However, we believe that it is
not necessary to go into the proofs of these results at this time.

Section 1.1

Students are usually familiar with the notations and operations of set algebra,
so that a brief review is quite adequate. One item that should be mentioned is
that two sets A and B are often proved to be equal by showing that: (i) if x∈A,
then x∈B, and (ii) if x∈B, then x∈A. This type of element-wise argument is
very common in real analysis, since manipulations with set identities is often not
suitable when the sets are complicated.

Students are often not familiar with the notions of functions that are injective
(= one-one) or surjective (= onto).

Sample Assignment: Exercises 1, 3, 9, 14, 15, 20.

Partial Solutions:

1. (a) B ∩ C = {5, 11, 17, 23, . . .} = {6k − 1 : k ∈ N}, A∩ (B ∩C) = {5, 11, 17}
(b) (A ∩B) \ C = {2, 8, 14, 20}
(c) (A ∩C) \ B = {3, 7, 9, 13, 15, 19}

2. The sets are equal to (a) A, (b) A ∩B, (c) the empty set.
3. If A ⊆B, then x∈A implies x∈B, whence x∈A∩B, so that A ⊆A ∩B ⊆A.

Thus, if A ⊆B, then A = A ∩ B.
Conversely, if A = A ∩ B, then x∈A implies x∈A ∩ B, whence x∈B.

Thus if A = A ∩ B, then A ⊆ B.
4. If x is in A \ (B ∩ C), then x is in A but x /∈ B ∩ C, so that x∈A and x is

either not in B or not in C. Therefore either x ∈ A \ B or x ∈ A \ C, which
implies that x ∈ (A \ B) ∪ (A \ C). Thus A \ (B ∩ C) ⊆ (A \ B) ∪ (A \ C).
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Conversely, if x is in (A \ B) ∪ (A \ C), then x ∈ A \ B or x ∈ A \ C. Thus
x ∈ A and either x /∈ B or x /∈ C, which implies that x ∈ A but x /∈ B ∩ C,
so that x ∈ A \ (B ∩ C). Thus (A \ B) ∪ (A \ C) ⊆ A \ (B ∩ C).

Since the sets A \ (B∩C) and (A \ B)∪(A \ C) contain the same elements,
they are equal.

5. (a) If x ∈ A ∩ (B ∪C), then x∈A and x∈B ∪C. Hence we either have
(i) x ∈ A and x ∈ B, or we have (ii) x ∈ A and x ∈ C. Therefore, either
x ∈ A ∩ B or x ∈ A ∩ C, so that x ∈ (A ∩ B) ∪ (A ∩ C). This shows that
A ∩ (B ∪ C) is a subset of (A ∩B) ∪ (A ∩C).

Conversely, let y be an element of (A ∩B) ∪ (A ∩C). Then either (j) y ∈
A ∩B, or (jj) y ∈A ∩C. It follows that y ∈A and either y ∈B or y ∈C.
Therefore, y ∈A and y ∈B ∪C, so that y ∈A ∩ (B ∪C). Hence (A ∩B) ∪
(A ∩C) is a subset of A ∩ (B ∪C).

In view of Definition 1.1.1, we conclude that the sets A ∩ (B ∪C) and
(A ∩B) ∪ (A ∩C) are equal.
(b) Similar to (a).

6. The set D is the union of {x : x∈A and x /∈ B} and {x : x /∈ A and x∈B}.
7. Here An = {n + 1, 2(n + 1), . . .}.

(a) A1 = {2, 4, 6, 8, . . .}, A2 = {3, 6, 9, 12, . . .}, A1 ∩A2 = {6, 12, 18, 24, . . .} =
{6k : k ∈ N} = A5.
(b)

⋃
An = N \ {1}, because if n > 1, then n ∈An−1; moreover 1 /∈ An.

Also
⋂

An = ∅, because n /∈An for any n ∈ N.
8. (a) The graph consists of four horizontal line segments.

(b) The graph consists of three vertical line segments.
9. No. For example, both (0, 1) and (0,− 1) belong to C.

10. (a) f(E) = {1/x2 : 1 ≤x≤ 2} = {y : 1
4 ≤ y ≤ 1} = [14 , 1].

(b) f−1(G) = {x : 1 ≤ 1/x2 ≤ 4} = {x : 1
4 ≤x2 ≤ 1} = [−1,−1

2 ] ∪ [12 , 1].
11. (a) f(E) = {x + 2 : 0 ≤ x ≤ 1} = [2, 3], so h(E) = g(f(E)) = g([2, 3]) =

{y2 : 2 ≤ y ≤ 3} = [4, 9].
(b) g−1(G) = {y : 0 ≤ y2 ≤ 4} = [−2, 2], so h−1(G) = f−1(g−1(G)) =
f−1([−2, 2]) = {x : −2 ≤ x + 2 ≤ 2} = [−4, 0].

12. If 0 is removed from E and F , then their intersection is empty, but the
intersection of the images under f is {y : 0 < y ≤ 1}.

13. E \ F = {x : −1 ≤ x < 0}, f(E) \ f(F ) is empty, and f(E \ F ) =
{y : 0 < y ≤ 1}.

14. If y ∈ f(E ∩ F ), then there exists x∈E ∩ F such that y = f(x). Since x∈E
implies y ∈ f(E), and x∈F implies y ∈ f(F ), we have y ∈ f(E) ∩ f(F ). This
proves f(E ∩F ) ⊆ f(E) ∩ f(F ).

15. If x∈ f−1(G) ∩ f−1(H), then x∈ f−1(G) and x∈ f−1(H), so that f(x) ∈G
and f(x) ∈H. Then f(x) ∈G ∩ H, and hence x∈ f−1(G ∩ H). This shows
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that f−1(G) ∩ f−1(H) ⊆ f−1(G ∩ H). The opposite inclusion is shown in
Example 1.1.8(b). The proof for unions is similar.

16. If f(a) = f(b), then a/
√

a2 + 1 = b/
√

b2 + 1, from which it follows that a2 = b2.
Since a and b must have the same sign, we get a = b, and hence f is injective.
If −1 < y < 1, then x := y/

√
1 − y2 satisfies f(x) = y (why?), so that f takes R

onto the set {y : − 1 < y < 1}. If x > 0, then x=
√

x2 <
√

x2 + 1, so it follows
that f(x) ∈ {y : 0 < y < 1}.

17. One bijection is the familiar linear function that maps a to 0 and b to 1,
namely, f(x) := (x− a)/(b − a). Show that this function works.

18. (a) Let f(x) = 2x, g(x) = 3x.
(b) Let f(x) = x2, g(x) = x, h(x) = 1. (Many examples are possible.)

19. (a) If x∈ f−1(f(E)), then f(x) ∈ f(E), so that there exists x1 ∈E such
that f(x1) = f(x). If f is injective, then x1 = x, whence x∈E. Therefore,
f−1(f(E)) ⊆ E. Since E ⊆ f−1(f(E)) holds for any f , we have set equality
when f is injective. See Example 1.1.8(a) for an example.
(b) If y ∈H and f is surjective, then there exists x∈A such that f(x) = y.
Then x∈ f−1(H) so that y ∈ f(f−1(H)). Therefore H ⊆ f(f−1(H)). Since
f(f−1(H)) ⊆ H for any f , we have set equality when f is surjective. See
Example 1.1.8(a) for an example.

20. (a) Since y = f(x) if and only if x= f−1(y), it follows that f−1(f(x)) =x and
f(f−1(y)) = y.
(b) Since f is injective, then f−1 is injective on R(f). And since f is surjec-
tive, then f−1 is defined on R(f) = B.

21. If g(f(x1)) = g(f(x2)), then f(x1) = f(x2), so that x1 = x2, which implies that
g ◦ f is injective. If w ∈C, there exists y ∈B such that g(y) = w, and there
exists x∈A such that f(x) = y. Then g(f(x)) =w, so that g ◦ f is surjective.
Thus g ◦ f is a bijection.

22. (a) If f(x1) = f(x2), then g(f(x1)) = g(f(x2)), which implies x1 = x2, since
g ◦ f is injective. Thus f is injective.
(b) Given w ∈C, since g ◦ f is surjective, there exists x∈A such that
g(f(x)) =w. If y := f(x), then y ∈B and g(y) = w. Thus g is surjective.

23. We have x ∈ f−1(g−1(H)) ⇐⇒ f(x) ∈ g−1(H) ⇐⇒ g(f(x)) ∈ H ⇐⇒ x ∈
(g ◦ f)−1(H).

24. If g(f(x)) =x for all x∈D(f), then g ◦ f is injective, and Exercise 22(a)
implies that f is injective on D(f). If f(g(y)) = y for all y ∈D(g), then
Exercise 22(b) implies that f maps D(f) onto D(g). Thus f is a bijection of
D(f) onto D(g), and g = f−1.

Section 1.2

The method of proof known as Mathematical Induction is used frequently in real
analysis, but in many situations the details follow a routine patterns and are
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left to the reader by means of a phrase such as: “The proof is by Mathematical
Induction”. Since may students have only a hazy idea of what is involved, it may
be a good idea to spend some time explaining and illustrating what constitutes a
proof by induction.

Pains should be taken to emphasize that the induction hypothesis does not
entail “assuming what is to be proved”. The inductive step concerns the validity
of going from the assertion for k ∈ N to that for k + 1. The truth of falsity of the
individual assertion is not an issue here.

Sample Assignment: Exercises 1, 2, 6, 11, 13, 14, 20.

Partial Solutions:

1. The assertion is true for n = 1 because 1/(1 · 2) = 1/(1 + 1). If it is true
for n = k, then it follows for k + 1 because k/(k + 1) + 1/[(k + 1)(k + 2)] =
(k + 1)/(k + 2).

2. The statement is true for n = 1 because [12 · 1 · 2]2 = 1 = 13. For the inductive
step, use the fact that

[1
2k(k + 1)

]2 + (k + 1)3 =
[1

2(k + 1)(k + 2)
]2

.

3. It is true for n = 1 since 3 = 4 − 1. If the equality holds for n = k, then
add 8(k + 1) − 5 = 8k + 3 to both sides and show that (4k2 − k) + (8k + 3) =
4(k + 1)2 − (k + 1) to deduce equality for the case n = k + 1.

4. It is true for n = 1 since 1 = (4 − 1)/3. If it is true for n = k, then add
(2k + 1)2 to both sides and use some algebra to show that

1
3(4k3 − k) + (2k + 1)2 = 1

3 [4k3 + 12k2 + 11k + 3] = 1
3 [4(k + 1)3 − (k + 1)],

which establishes the case n = k + 1.
5. Equality holds for n = 1 since 12 = (−1)2(1 · 2)/2. The proof is completed by

showing (−1)k+1[k(k + 1)]/2 + (−1)k+2(k + 1)2 = (−1)k+2[(k + 1)(k + 2)]/2.
6. If n = 1, then 13 + 5 · 1 = 6 is divisible by 6. If k3 + 5k is divisible by 6,

then (k + 1)3 + 5(k + 1) = (k3 + 5k) + 3k(k + 1) + 6 is also, because k(k + 1)
is always even (why?) so that 3k(k + 1) is divisible by 6, and hence the sum
is divisible by 6.

7. If 52k − 1 is divisible by 8, then it follows that 52(k+1) − 1 = (52k − 1) + 24 · 52k

is also divisible by 8.
8. 5k+1 −4(k +1)−1=5 ·5k −4k − 5 = (5k − 4k − 1) + 4(5k − 1). Now show that

5k − 1 is always divisible by 4.
9. If k3 + (k + 1)3 + (k + 2)3 is divisible by 9, then (k + 1)3 + (k+2)3 + (k + 3)3 =

k3 + (k + 1)3 + (k + 2)3 + 9(k2 + 3k + 3) is also divisible by 9.
10. The sum is equal to n/(2n + 1).
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11. The sum is 1 + 3 + · · · + (2n − 1) = n2. Note that k2 + (2k + 1) = (k + 1)2.
12. If n0 > 1, let S1 := {n ∈ N : n − n0 + 1 ∈S} Apply 1.2.2 to the set S1.
13. If k < 2k, then k + 1 < 2k + 1 < 2k + 2k = 2(2k) = 2k + 1.
14. If n = 4, then 24 = 16 < 24 = 4!. If 2k < k! and if k ≥ 4, then 2k+1 = 2 · 2k <

2 · k! < (k + 1) · k! = (k + 1)!. [Note that the inductive step is valid when-
ever 2 < k + 1, including k = 2, 3, even though the statement is false for these
values.]

15. For n = 5 we have 7 ≤ 23. If k ≥ 5 and 2k − 3 ≤ 2k−2, then 2(k + 1) − 3 =
(2k − 3) + 2 ≤ 2k−2 + 2k−2 = 2(k + 1)−2.

16. It is true for n = 1 and n ≥ 5, but false for n = 2, 3, 4. The inequality
2k + 1 < 2k, wich holds for k ≥ 3, is needed in the induction argument. [The
inductive step is valid for n = 3, 4 even though the inequality n2 < 2n is false
for these values.]

17. m = 6 trivially divides n3 − n for n = 1, and it is the largest integer to divide
23 − 2 = 6. If k3 − k is divisible by 6, then since k2 + k is even (why?), it
follows that (k + 1)3 − (k + 1) = (k3 − k) + 3(k2 + k) is also divisible by 6.

18.
√

k + 1/
√

k + 1 = (
√

k
√

k + 1 + 1)/
√

k + 1 > (k + 1)/
√

k + 1 =
√

k + 1.
19. First note that since 2 ∈S, then the number 1 = 2− 1 belongs to S. If m /∈ S,

then m < 2m ∈S, so 2m − 1 ∈S, etc.
20. If 1≤xk−1 ≤ 2 and 1≤xk ≤ 2, then 2≤xk−1 + xk ≤ 4, so that 1 ≤xk + 1 =

(xk−1 + xk)/2 ≤ 2.

Section 1.3

Every student of advanced mathematics needs to know the meaning of the words
“finite”, “infinite”, “countable” and “uncountable”. For most students at this
level it is quite enough to learn the definitions and read the statements of the
theorems in this section, but to skip the proofs. Probably every instructor will
want to show that Q is countable and R is uncountable (see Section 2.5).

Some students will not be able to comprehend that proofs are necessary for
“obvious” statements about finite sets. Others will find the material absolutely
fascinating and want to prolong the discussion forever. The teacher must avoid
getting bogged down in a protracted discussion of cardinal numbers.

Sample Assignment: Exercises 1, 5, 7, 9, 11.

Partial Solutions:

1. If T1 �= ∅ is finite, then the definition of a finite set applies to T2 = Nn for
some n. If f is a bijection of T1 onto T2, and if g is a bijection of T2 onto Nn,
then (by Exercise 1.1.21) the composite g ◦ f is a bijection of T1 onto Nn, so
that T1 is finite.
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2. Part (b) Let f be a bijection of Nm onto A and let C = {f(k)} for some
k ∈ Nm. Define g on Nm−1 by g(i) := f(i) for i = 1, . . . , k − 1, and g(i) :=
f(i+ 1) for i= k, . . . , m− 1. Then g is a bijection of Nm−1 onto A\C. (Why?)
Part (c) First note that the union of two finite sets is a finite set. Now note
that if C/B were finite, then C = B ∪ (C \ B) would also be finite.

3. (a) The element 1 can be mapped into any of the three elements of T , and
2 can then be mapped into any of the two remaining elements of T , after
which the element 3 can be mapped into only one element of T. Hence there
are 6 = 3 · 2 · 1 different injections of S into T .
(b) Suppose a maps into 1. If b also maps into 1, then c must map into 2; if b
maps into 2, then c can map into either 1 or 2. Thus there are 3 surjections
that map a into 1, and there are 3 other surjections that map a into 2.

4. f(n) := 2n + 13, n ∈ N.
5. f(1) := 0, f(2n) :=n, f(2n + 1) :=−n for n ∈ N.
6. The bijection of Example 1.3.7(a) is one example. Another is the shift defined

by f(n) :=n + 1 that maps N onto N \ {1}.
7. If T1 is denumerable, take T2 = N. If f is a bijection of T1 onto T2, and if g

is a bijection of T2 onto N, then (by Exercise 1.1.21) g ◦ f is a bijection of T1
onto N, so that T1 is denumerable.

8. Let An := {n} for n ∈ N, so
⋃

An = N.
9. If S∩T = ∅ and f : N → S, g: N → T are bijections onto S and T , respectively,

let h(n) := f((n + 1)/2) if n is odd and h(n) := g(n/2) if n is even. It is readily
seen that h is a bijection of N onto S ∪T ; hence S ∪T is denumerable. What
if S ∩T �= ∅?

10. (a) m + n − 1 = 9 and m = 6 imply n = 4. Then h(6, 4) = 1
2 · 8 · 9 + 6 = 42.

(b) h(m, 3) = 1
2(m + 1)(m + 2) +m = 19, so that m2 + 5m − 36 = 0. Thus

m = 4.
11. (a) P({1, 2}) = {∅, {1}, {2}, {1, 2}} has 22 = 4 elements.

(b) P({1, 2, 3}) has 23 = 8 elements.
(c) P({1, 2, 3, 4}) has 24 = 16 elements.

12. Let Sn+1 := {x1, . . . , xn, xn+1} = Sn ∪ {xn+1} have n + 1 elements. Then a
subset of Sn+1 either (i) contains xn+1, or (ii) does not contain xn+1. The
induction hypothesis implies that there are 2n subsets of type (i), since each
such subset is the union of {xn+1} and a subset of Sn. There are also 2n

subsets of type (ii). Thus there is a total of 2n + 2n = 2 · 2n = 2n + 1 subsets
of Sn+1.

13. For each m ∈ N, the collection of all subsets of Nm is finite. (See Exercise 12.)
Every finite subset of N is a subset of Nm for a sufficiently large m. Therefore
Theorem 1.3.12 implies that F(N) =

⋃∞
m=1 P(Nm) is countable.



CHAPTER 2

THE REAL NUMBERS

Students will be familiar with much of the factual content of the first few sections,
but the process of deducing these facts from a basic list of axioms will be new
to most of them. The ability to construct proofs usually improves gradually
during the course, and there are much more significant topics forthcoming. A few
selected theorems should be proved in detail, since some experience in writing
formal proofs is important to students at this stage. However, one should not
spend too much time on this material.

Sections 2.3 and 2.4 on the Completeness Property form the heart of this
chapter. These sections should be covered thoroughly. Also the Nested Intervals
Property in Section 2.5 should be treated carefully.

Section 2.1

One goal of Section 2.1 is to acquaint students with the idea of deducing conse-
quences from a list of basic axioms. Students who have not encountered this type
of formal reasoning may be somewhat uncomfortable at first, since they often
regard these results as “obvious”. Since there is much more to come, a sampling
of results will suffice at this stage, making it clear that it is only a sampling.
The classic proof of the irrationality of

√
2 should certainly be included in the

discussion, and students should be asked to modify this argument for
√

3, etc.

Sample Assignment: Exercises 1(a,b), 2(a,b), 3(a,b), 6, 13, 16(a,b), 20, 23.

Partial Solutions:

1. (a) Apply appropriate algebraic properties to get b = 0 + b = (−a + a) + b =
−a + (a + b) = −a + 0 =−a.
(b) Apply (a) to (−a) + a = 0 with b = a to conclude that a = −(−a).
(c) Apply (a) to the equation a + (−1)a = a(1 + (−1)) = a · 0 = 0 to conclude
that (−1)a = −a.
(d) Apply (c) with a = −1 to get (−1)(−1) = −(−1). Then apply (b) with
a = 1 to get (−1)(−1) = 1.

2. (a) −(a + b) = (−1)(a + b) = (−1)a + (−1)b = (−a) + (−b).
(b) (−a) · (−b) = ((−1)a) · ((−1)b) = (−1)(−1)(ab) = ab.
(c) Note that (−a)(−(1/a)) = a(1/a) = 1.
(d) −(a/b) = (−1)(a(1/b)) = ((−1)a)(1/b) = (−a)/b.

3. (a) Add −5 to both sides of 2x+ 5 = 8 and use (A2),(A4),(A3) to get 2x= 3.
Then multiply both sides by 1/2 to get x= 3/2.
(b) Write x2 − 2x= x(x − 2) = 0 and apply Theorem 2.1.3(b). Alternatively,
note that x= 0 satisfies the equation, and if x �= 0, then multiplication by
1/x gives x= 2.
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