Solution 1.1

(a) $\mathrm{q}=6.482 \times 10^{17} \times\left[-1.602 \times 10^{-19} \mathrm{C}\right]=\mathbf{- 1 0 3 . 8 4} \mathbf{~ m C}$
(b) $\mathrm{q}=1.24 \times 10^{18} \times\left[-1.602 \times 10^{-19} \mathrm{C}\right]=\mathbf{- 1 9 8 . 6 5} \mathrm{mC}$
(c) $\mathrm{q}=2.46 \times 10^{19} \times\left[-1.602 \times 10^{-19} \mathrm{C}\right]=-3.941 \mathrm{C}$
(d) $q=1.628 \times 10^{20} \times\left[-1.602 \times 10^{-19} \mathrm{C}\right]=-26.08 \mathrm{C}$

Solution 1.2

Determine the current flowing through an element if the charge flow is given by
(a) $\mathrm{q}(\mathrm{t})=(3) \mathrm{mC}$
(b) $q(t)=\left(4 t^{2}+20 t-4\right) C$
(c) $\mathrm{q}(\mathrm{t})=\left(15 \mathrm{e}^{-3 \mathrm{t}}-2 \mathrm{e}^{-18 \mathrm{t}}\right) \mathrm{nC}$
(d) $q(t)=5 t^{2}\left(3 t^{3}+4\right) p C$
(e) $q(t)=2 e^{-3 t} \sin (20 \pi t) \mu C$
(a) $\mathrm{i}=\mathrm{dq} / \mathrm{dt}=0 \mathrm{~mA}$
(b) $\mathrm{i}=\mathrm{dq} / \mathrm{dt}=(8 \mathrm{t}+20) \mathrm{A}$
(c) $\mathrm{i}=\mathrm{dq} / \mathrm{dt}=\left(-45 \mathrm{e}^{-3 \mathrm{t}}+36 \mathrm{e}^{-18 \mathrm{t}}\right) \mathrm{nA}$
(d) $i=d q / d t=\left(75 t^{4}+40 t\right) p A$
(e) $\mathrm{i}=\mathrm{dq} / \mathrm{dt}=\left\{-6 \mathrm{e}^{-3 \mathrm{t}} \sin (20 \pi \mathrm{t})+40 \pi \mathrm{e}^{-3 \mathrm{t}} \cos (20 \pi \mathrm{t})\right\} \mu \mathrm{A}$

Solution 1.3

(a) $\mathrm{q}(\mathrm{t})=\int \mathrm{i}(\mathrm{t}) \mathrm{dt}+\mathrm{q}(0)=(3 \mathrm{t}+1) \mathrm{C}$
(b) $\mathrm{q}(\mathrm{t})=\int(2 \mathrm{t}+\mathrm{s}) \mathrm{dt}+\mathrm{q}(\mathrm{v})=\left(\mathrm{t}^{2}+5 \mathrm{t}\right) \mathrm{mC}$
(c) $\mathrm{q}(\mathrm{t})=\int 20 \cos (10 \mathrm{t}+\pi / 6)+\mathrm{q}(0)=\underline{(2 \sin (10 t+\pi / 6)+1) \mu \mathrm{C}}$
(d) $\mathrm{q}(\mathrm{t})=\int 10 \mathrm{e}^{-30 \mathrm{t}} \sin 40 \mathrm{t}+\mathrm{q}(0)=\frac{10 \mathrm{e}^{-30 \mathrm{t}}}{900+1600}(-30 \sin 40 \mathrm{t}-40 \cos \mathrm{t})$
$=-\mathrm{e}^{-30 t}(0.16 \cos 40 \mathrm{t}+0.12 \sin 40 \mathrm{t}) \mathrm{C}$

Solution 1.4

Since i is equal to $\Delta q / \Delta t$ then $i=300 / 30=\mathbf{1 0} \mathbf{a m p s}$.

Solution 1.5

$$
q=\int i d t=\int_{0}^{10} \frac{1}{2} t d t=\left.\frac{t^{2}}{4}\right|_{0} ^{10}=\underline{25 \mathrm{C}}
$$

Solution 1.6

(a) At t $=1 \mathrm{~ms}, \mathrm{i}=\frac{\mathrm{dq}}{\mathrm{dt}}=\frac{30}{2}=\underline{\mathbf{1 5} \mathbf{A}}$
(b) Att $=6 \mathrm{~ms}, \mathrm{i}=\frac{\mathrm{dq}}{\mathrm{dt}}=\underline{\mathbf{0} \mathbf{A}}$
(c) At t $=10 \mathrm{~ms}, \mathrm{i}=\frac{\mathrm{dq}}{\mathrm{dt}}=\frac{-30}{4}=\underline{-7.5 \mathrm{~A}}$

Solution 1.7

$\mathrm{i}=\frac{\mathrm{dq}}{\mathrm{dt}}=\left[\begin{array}{ll}10 \mathrm{~A}, & 0<\mathrm{t}<1 \\ -20 \mathrm{~A}, & 1<t<2 \\ 0 \mathrm{~A}, & 2<\mathrm{t}<3 \\ 10 \mathrm{~A}, & 3<\mathrm{t}<4\end{array}\right.$
which is sketched below:

Solution 1.8

$\mathrm{q}=\int \mathrm{idt}=\frac{10 \times 1}{2}+10 \times 1=\underline{15 \mu \mathrm{C}}$

Solution 1.9

(a) $\mathrm{q}=\int \mathrm{idt}=\int_{0}^{1} 10 \mathrm{dt}=\underline{10 \mathrm{C}}$
(b) $\mathrm{q}=\int_{0}^{3}{ }_{0} \mathrm{idt}=10 \times 1+\left(10-\frac{5 \times 1}{2}\right)+5 \times 1$

$$
=15+7.5+5=\underline{22.5 \mathrm{C}}
$$

(c) $\mathrm{q}=\int_{0}^{5} \mathrm{idt}=10+10+10=\underline{30 \mathrm{C}}$

Solution 1.10

$$
\mathrm{q}=\mathrm{it}=10 \times 10^{3} \times 15 \times 10^{-6}=\underline{\mathbf{1 5 0}} \mathbf{~ m C}
$$

Copyright © 2017 McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

Solution 1.11

$\mathrm{q}=\mathrm{it}=90 \times 10^{-3} \times 12 \times 60 \times 60=3.888 \mathbf{k C}$
$\mathrm{E}=\mathrm{pt}=\mathrm{ivt}=\mathrm{qv}=3888 \mathrm{x} 1.5=5.832 \mathbf{k J}$

Copyright © 2017 McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

Solution 1.12

For $0<\mathrm{t}<6 \mathrm{~s}$, assuming $\mathrm{q}(0)=0$,
$q(t)=\int_{0}^{t} i d t+q(0)=\int_{0}^{t} 3 t d t+0=1.5 t^{2}$
At $t=6, q(6)=1.5(6)^{2}=54$
For $6<t<10 s$,
$q(t)=\int_{6}^{t} i d t+q(6)=\int_{6}^{t} 18 d t+54=18 t-54$
At $\mathrm{t}=10, \mathrm{q}(10)=180-54=126$
For $10<t<15 \mathrm{~s}$,
$q(t)=\int_{10}^{t} i d t+q(10)=\int_{10}^{t}(-12) d t+126=-12 t+246$

At $\mathrm{t}=15, \mathrm{q}(15)=-12 \mathrm{x} 15+246=66$
For $15<t<20 s$,
$q(t)=\int_{15}^{t} 0 d t+q(15)=66$
Thus,
$q(t)=\left\{\begin{array}{c}1.5 t^{2} \mathbf{C}, \mathbf{0}<\mathbf{t}<\mathbf{6 s} \\ 18 t-54 \mathbf{C}, \mathbf{6}<\mathbf{t}<\mathbf{1 0 s} \\ -12 t+246 \mathbf{C}, \mathbf{1 0}<\mathbf{t}<\mathbf{1 5 s} \\ 66 \mathbf{C}, \mathbf{1 5}<\mathbf{t}<\mathbf{2 0 s}\end{array}\right.$

The plot of the charge is shown below.

Copyright © 2017 McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

Copyright © 2017 McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

Solution 1.13

(a) $i=[\mathrm{dq} / \mathrm{dt}]=20 \pi \cos (4 \pi \mathrm{t}) \mathrm{mA}$
$p=v i=60 \pi \cos ^{2}(4 \pi \mathrm{t}) \mathrm{mW}$
At $\mathrm{t}=0.3 \mathrm{~s}$,

$$
p=v i=60 \pi \cos ^{2}(4 \pi 0.3) \mathrm{mW}=123.37 \mathrm{~mW}
$$

(b) $W=$

$$
\int p d t=60 \pi \int_{0}^{0.6} \cos ^{2}(4 \pi t) d t=30 \pi \int_{0}^{0.6}
$$

$$
W=30 \pi[0.6+(1 /(8 \pi))[\sin (8 \pi 0.6)-\sin (0)]]=\mathbf{5 8 . 7 6} \mathbf{~ m J}
$$

Solution 1.14

The voltage $v(t)$ across a device and the current $i(t)$ through it are

$$
v(t)=20 \sin (4 t) \text { volts and } i(t)=10\left(1+\mathrm{e}^{-2 t}\right) \text { m-amps. }
$$

Calculate:
(a) the total charge in the device at $t=1 \mathrm{~s}$, assume $\mathrm{q}(0)=0$.
(b) the power consumed by the device at $t=1 \mathrm{~s}$.
(a) $\mathrm{q}=\int \mathrm{idt}=\int_{0}^{1} 0.01\left(1+\mathrm{e}^{-2 \mathrm{t}}\right) \mathrm{dt}=\left.0.01\left(\mathrm{t}-0.5 \mathrm{e}^{-2 \mathrm{t}}\right)\right|_{0} ^{1}=0.01\left(1-0.5 \mathrm{e}^{-2}+0.5\right)$ $=0.01(1-0.135335+0.5)=\mathbf{1 3 . 6 4 7} \mathbf{~ m C}$.
(b) $\quad \mathrm{p}(\mathrm{t})=v(t) \mathrm{i}(t) ; v(1)=20 \sin (4)=20 \sin \left(229.18^{\circ}\right)=-15.135$ volts; and $i(1)=10\left(1+\mathrm{e}^{-2}\right)\left(10^{-3}\right)=10(1.1353)\left(10^{-3}\right)=11.353 \mathrm{~m}-\mathrm{amps}$ $p(1)=(-15.125)(11.353)\left(10^{-3}\right)=\mathbf{- 1 7 1 . 7 1} \mathbf{m W}$

Solution 1.15

(a) $\mathrm{q}=\int \mathrm{idt}=\int_{0}^{2} 0.006 \mathrm{e}^{-2 \mathrm{t}} \mathrm{dt}=\left.\frac{-0.006}{2} \mathrm{e}^{2 t}\right|_{0} ^{2}$

$$
=-0.003\left(e^{-4}-1\right)=
$$

2.945 mC
(b) $\quad \mathrm{v}=\frac{10 \mathrm{di}}{\mathrm{dt}}=-0.012 \mathrm{e}^{-2 \mathrm{t}}(10)=-0.12 \mathrm{e}^{-2 \mathrm{t}} \mathrm{V}$ this leads to $\mathrm{p}(\mathrm{t})=\mathrm{v}(\mathrm{t}) \mathrm{i}(\mathrm{t})=$ $\left(-0.12 e^{-2 t}\right)\left(0.006 e^{-2 t}\right)=-720 \mathbf{e}^{-4 t} \boldsymbol{\mu} \mathbf{W}$
(c) $\mathrm{w}=\int \mathrm{pdt}=-0.72 \int_{0}^{3} \mathrm{e}^{-4 \mathrm{t}} \mathrm{dt}=\left.\frac{-720}{-4} \mathrm{e}^{-4 \mathrm{t}} 10^{-6}\right|_{0} ^{3}=-\mathbf{1 8 0} \boldsymbol{\mu} \mathbf{J}$

Solution 1.16

(a)

$$
\begin{aligned}
& i(t)=\left\{\begin{array}{c}
30 t \mathrm{~mA}, 0<\mathrm{t}<2 \\
120-30 \mathrm{t} \mathrm{~mA}, 2<\mathrm{t}<4
\end{array}\right. \\
& v(t)=\left\{\begin{array}{l}
5 \mathrm{~V}, 0<\mathrm{t}<2 \\
-5 \mathrm{~V}, 2<\mathrm{t}<4
\end{array}\right. \\
& p(t)=\left\{\begin{array}{c}
150 \mathrm{~mW}, 0<\mathrm{t}<2 \\
-600+150 \mathrm{t} \mathrm{~mW}, 2<\mathrm{t}<4
\end{array}\right.
\end{aligned}
$$

which is sketched below.

(b) From the graph of p ,

$$
W=\int_{0}^{4} p d t=\underline{0 \mathrm{~J}}
$$

Solution 1.17

Figure 1.28 shows a circuit with four elements, $p_{1}=60$ watts absorbed, $p_{3}=-145$ watts absorbed, and $p_{4}=75$ watts absorbed. How many watts does element 2 absorb?

Figure 1.28
For Prob. 1.17.
$\sum \mathrm{p}=0=60+\mathrm{p}_{2}-145+75=0$ or $\mathrm{p}_{2}=-60+145-75=10$ watts absorbed.

Solution 1.18

$$
\begin{aligned}
& \mathrm{p}_{1}=30(-10)=-\mathbf{3 0 0} \mathbf{~ W} \\
& \mathrm{p}_{2}=10(10)=100 \mathrm{~W} \\
& \mathrm{p}_{3}=20(14)=\mathbf{2 8 0} \mathbf{~ W} \\
& \mathrm{p}_{4}=8(-4)=-32 \mathrm{~W} \\
& \mathrm{p}_{5}=12(-4)=-48 \mathrm{~W}
\end{aligned}
$$

Solution 1.19

Find I and the power absorbed by each element in the network of Fig. 1.30.

Figure 1.30
For Prob. 1.19.
$\mathrm{I}=-10+4=-6 \mathbf{a m p s}$
Calculating the power absorbed by each element means we need to find vi (being careful to use the passive sign convention) for each element.
$\mathrm{P}_{10 \mathrm{amp} \text { source }}=-10 \times 15=\mathbf{- 1 5 0} \mathbf{W}$
Pelement with 15 volts across it $=4 \times 15=\mathbf{6 0} \mathbf{~ W}$
Pelement with 9 volts across it $=-(-6 \times 9)=54 \mathrm{~W}$
p 6 volt source $=-(-6 \mathrm{x} 6)=\mathbf{3 6} \mathbf{~ W}$
One check we can use is that the sum of the power absorbed must equal zero which is what it does.

Solution 1.20

p_{30} volt source $=30 \mathrm{x}(-6)=\mathbf{- 1 8 0} \mathbf{W}$
p_{12} volt element $=12 \times 6=72 \mathbf{W}$
P 28 volt e.ement with 2 amps flowing through it $=28 \mathrm{x} 2=56 \mathbf{W}$
P28 volt element with 1 amp flowing through it $=28 \times 1=28 \mathbf{W}$
$\mathrm{p}_{\text {the }}$ 5lo dependent source $=5 \mathrm{x} 2 \mathrm{x}(-3)=\mathbf{- 3 0} \mathbf{~ W}$
Since the total power absorbed by all the elements in the circuit must equal zero, or $0=-180+72+56+28-30+p_{\text {into }}$ the element with Vo or
pinto the element with $\mathrm{Vo}_{\mathrm{o}}=180-72-56-28+30=54 \mathbf{W}$
Since pinto the element with $V_{o}=V_{o x 3}=54 \mathrm{~W}$ or $V_{o}=\mathbf{1 8} \mathrm{V}$.

Solution 1.21

$p=v i \longrightarrow i=\frac{p}{v}=\frac{60}{120}=0.5 \mathrm{~A}$
$\mathrm{q}=$ it $=0.5 \times 24 \times 60 \times 60=43.2 \mathrm{kC}$
$N_{e}=q \times 6.24 \times 10^{18}=\underline{2.696 \times 10^{23} \text { electrons }}$

Solution 1.22

$$
\mathrm{q}=\mathrm{it}=40 \times 10^{3} \times 1.7 \times 10^{-3}=68 \mathrm{C}
$$

Solution 1.23

$\mathrm{W}=\mathrm{pt}=1.8 \mathrm{x}(15 / 60) \mathrm{x} 30 \mathrm{kWh}=13.5 \mathrm{kWh}$
$C=10$ cents x13.5 $=\mathbf{\$ 1 . 3 5}$

Solution 1.24

$$
\begin{aligned}
& \mathrm{W}=\mathrm{pt}=60 \mathrm{x} 24 \mathrm{~Wh}=0.96 \mathrm{kWh}=1.44 \mathrm{kWh} \\
& \mathrm{C}=8.2 \text { centsx } 0.96=\mathbf{1 1 . 8 0 8} \text { cents }
\end{aligned}
$$

Solution 1.25

A $1.2-\mathrm{kW}$ toaster takes roughly 4 minutes to heat four slices of bread. Find the cost of operating the toaster twice per day for 2 weeks (14 days). Assume energy costs 9 cents/kWh.

Cost $=1.2 \mathrm{~kW} \times \frac{4}{60} \mathrm{hr} \times 14 \times 9$ cents $/ \mathrm{kWh}=\mathbf{1 0 . 0 8}$ cents

Solution 1.26

(a) Clearly 10.78 watt-hours $=($ voltage $)($ current $)($ time $)=3.85 \mathrm{I}(3)$ or $\mathrm{I}=10.78 /[(3.85)(3)]=\quad 933.3 \mathbf{~ m A}$
(b) $\mathrm{p}=$ energy/time $=10.78 / 3=3.593 \mathrm{~W}$
(c) amp-hours $=$ energy/voltage $=10.78 / 3.85=2.8$ amp-hours

Solution 1.27

(a) Let $T=4 \mathrm{~h}=4 \times 3600$

$$
\mathrm{q}=\int \mathrm{idt}=\int_{0}^{\mathrm{T}} 3 \mathrm{dt}=3 \mathrm{~T}=3 \times 4 \times 3600=\underline{43.2 \mathrm{kC}}
$$

(b) $\mathrm{W}=\int \mathrm{pdt}=\int_{0}^{\mathrm{T}} \mathrm{vidt}=\int_{0}^{T}(3)\left(10+\frac{0.5 \mathrm{t}}{3600}\right) \mathrm{dt}$

$$
\begin{aligned}
& =\left.3\left(10 t+\frac{0.25 t^{2}}{3600}\right)\right|_{0} ^{4 \times 3600}=3[40 \times 3600+0.25 \times 16 \times 3600] \\
& =\underline{475.2 \mathrm{~kJ}}
\end{aligned}
$$

(c) $\quad \mathrm{W}=475.2 \mathrm{kWs}, \quad(\mathrm{J}=\mathrm{Ws})$

Cost $=\frac{475.2}{3600} \mathrm{kWh} \times 9$ cent $=\underline{1.188 \text { cents }}$

Solution 1.28

A 150-W incandescent outdoor lamp is connected to a 120-V source and is left burning continuously for an average of 12 hours per day. Determine:
(a) the current through the lamp when it is lit, (b) the cost of operating the light for one non-leap year if electricity costs 9.5 cents per kWh.
(a) $i=\frac{P}{V}=\frac{150}{120}$
$=1.25 \mathrm{~A}$
(b) $\mathrm{w}=\mathrm{pt}=150 \times 365 \times 12 \mathrm{~Wh}=657 \mathrm{kWh}$

Cost $=\$ 0.095 \times 657$
$=\$ 62.42$

Solution 1.29

$$
\begin{aligned}
w & =p t=1.2 \mathrm{~kW} \frac{(20+40+15+45)}{60} \mathrm{hr}+1.8 \mathrm{~kW}\left(\frac{30}{60}\right) \mathrm{hr} \\
& =2.4+0.9=3.3 \mathrm{kWh} \\
\text { Cost } & =12 \text { cents } \times 3.3=\underline{39.6 \text { cents }}
\end{aligned}
$$

Solution 1.30

Monthly charge = \$6
First 250 kWh @ $\$ 0.02 / \mathrm{kWh}=\$ 5$
Remaining 2,436-250 kWh = 2,186 kWh @ \$0.07/kWh= \$153.02
Total $=\mathbf{\$ 1 6 4 . 0 2}$

Solution 1.31

In a household, a business is run for an average of 6 hours per day. The total power consumed by the computer and its printer is 230 watts. In addition, a $75-\mathrm{W}$ light runs during the same 6 hours. If their utility charges 11.75 cents per kWhr, how much do the owners pay every 30 days?

Total energy consumed over every 30 day period $=30[(230+75) 6]=54.9 \mathrm{kWhr}$
Cost per 30 day period $=\$ 0.1175 \times 54.9=\$ 6.451$

Solution 1.32

$$
\begin{aligned}
& \mathrm{i}=20 \mu \mathrm{~A} \\
& \mathrm{q}=15 \mathrm{C} \\
& \mathrm{t}=\mathrm{q} / \mathrm{i}=15 /\left(20 \times 10^{-6}\right)=\mathbf{7 5 0 \times 1 0 ^ { 3 }} \mathbf{~ h r s}
\end{aligned}
$$

Solution 1.33

$$
\mathrm{i}=\frac{\mathrm{dq}}{\mathrm{dt}} \rightarrow \mathrm{q}=\int \mathrm{idt}=2000 \times 3 \times 10^{-3}=\underline{6 \mathrm{C}}
$$

Solution 1.34

(a) Energy $=\sum p t=200 \times 6+800 \times 2+200 \times 10+1200 \times 4+200 \times 2$ $=10 \mathrm{kWh}$
(b) Average power $=10,000 / 24=\mathbf{4 1 6 . 7} \mathbf{~ W}$

Solution 1.35

$$
\text { energy }=(5 x 5+4 \times 5+3 x 5+8 x 5+4 x 10) / 60=2.333 \mathbf{M W h r}
$$

Solution 1.36

A battery can be rated in ampere-hours or watt hours. The ampere hours can be obtained from the watt hours by dividing watt hours be a nominal voltage of 12 volts. If an automobile battery is rated at 20 ampere-hours,
(a) what is the maximum current that can be supplied for 15 minutes?
(b) how many days will it last if it is discharged at a rate of 2 mA ?
(a) $\mathrm{I}=20 / 0 \cdot 25=\mathbf{8 0} \mathbf{~ a m p s}$.
(b) days $=(20 / 0.002) / 24=416.7$ days.

Solution 1.37

A total of 2 MJ are delivered to an automobile battery (assume 12 volts) giving it an additional charge. How much is that additional charge? Express your answer in amperehours.

Solution

$2,000,000=\mathrm{w}=\mathrm{pt}=$ vit $=12 \mathrm{it}=12$ (charge) or
charge $=2 \times 10^{6} / 12=1.666710^{5}$ coulomb $=1.666710^{5}$ Coulomb $\times 1$ hour $/ 3,600$ seconds $=$ 46.3 ampere-hour.
charge $=46.3$ ampere-hours.

Solution 1.38

$$
\begin{aligned}
& \mathrm{P}=10 \mathrm{hp}=7460 \mathrm{~W} \\
& \mathrm{~W}=\mathrm{pt}=7460 \times 30 \times 60 \mathrm{~J}=\mathbf{1 3 . 4 3} \times \mathbf{1 0}^{\mathbf{6}} \mathbf{J}
\end{aligned}
$$

Solution 1.39

$\mathrm{W}=\mathrm{pt}=600 \mathrm{x} 4=2.4 \mathrm{kWh}$
$C=10$ cents $\mathrm{x} 2.4=24$ cents

