All parts of the problem are solved using the relation

$$V_{\rm rms} = \sqrt{4kTRB}$$

where

$$k = 1.38 \times 10^{-23} \text{ J/K}$$

 $B = 30 \text{ MHz} = 3 \times 10^7 \text{ Hz}$

a. For $R=10,000~{\rm ohms}$ and $T=T_0=290~{\rm K}$

$$V_{\rm rms} = \sqrt{4 (1.38 \times 10^{-23}) (290) (10^4) (3 \times 10^7)}$$

= 6.93 × 10⁻⁵ V rms
= 69.3 µV rms

b. $V_{\rm rms}$ is smaller than the result in part (a) by a factor of $\sqrt{10} = 3.16$. Thus

$$V_{\rm rms} = 21.9 \ \mu \rm V \ rms$$

c. $V_{\rm rms}$ is smaller than the result in part (a) by a factor of $\sqrt{100} = 10$. Thus

 $V_{\rm rms} = 6.93 \ \mu {\rm V \ rms}$

d. Each answer becomes smaller by factors of 2, $\sqrt{10} = 3.16$, and 10, respectively.

Problem A.2 Use

$$I = I_s \left[\exp\left(\frac{eV}{kT}\right) - 1 \right]$$

We want $I > 20I_s$ or $\exp\left(\frac{eV}{kT}\right) - 1 > 20$.

a. At T = 290 K, $\frac{e}{kT} = \frac{1.6 \times 10^{-19}}{1.38 \times 10^{23} \times 290} \cong 40$, so we have $\exp(40V) > 21$ giving

$$V > \frac{\ln (21)}{40} = 0.0761 \text{ volts}$$

$$i_{\rm rms}^2 \cong 2eIB \simeq 2eBI_s \exp\left(\frac{eV}{kT}\right)$$
or
$$\frac{i_{\rm rms}^2}{B} = 2eI_s \exp\left(\frac{eV}{kT}\right)$$

$$= 2(1.6 \times 10^{-19})(1.5 \times 10^{-5}) \exp(40 \times 0.0761)$$

$$= 1.0075 \times 10^{-22} \text{ A}^2/\text{Hz}$$

b. If T = 90 K, then $\frac{e}{kT} \approx 129$, and for $I > 20I_s$, we need $\exp(129V) > 21$ or

$$V > \frac{\ln(21)}{129} = 2.36 \times 10^{-2}$$
 volts

Thus

$$\frac{i_{\rm rms}^2}{B} = 2 \left(1.6 \times 10^{-19} \right) \left(1.5 \times 10^{-5} \right) \exp \left(129 \times 0.0236 \right)$$
$$= 1.0079 \times 10^{-22} \, {\rm A}^2 / {\rm Hz}$$

approximately as before.

Problem A.3

a. Use Nyquist's formula to get the equivalent circuit of R_{eq} in parallel with R_L , where R_{eq} is given by

$$R_{\rm eq} = \frac{R_3 \left(R_1 + R_2 \right)}{R_1 + R_2 + R_3}$$

The noise equivalent circuit consists of a rms noise voltage, V_{eq} , in series with R_{eq} and a rms noise voltage, V_L , in series with with R_L with these series combinations being in parallel. The equivalent noise voltages are

$$V_{\rm eq} = \sqrt{4kTR_{\rm eq}B}$$
$$V_L = \sqrt{4kTR_LB}$$

The rms noise voltages across the parallel combination of R_{eq} and R_L , by using superposition and voltage division, are

$$V_{01} = rac{V_{
m eq} R_L}{R_{
m eq} + R_L} \,\, {
m and} \,\, V_{02} = rac{V_L R_{
m eq}}{R_{
m eq} + R_L}$$

Adding noise powers to get V_0^2 we obtain

$$V_0^2 = \frac{V_{eq}^2 R_L^2}{(R_{eq} + R_L)^2} + \frac{V_L^2 R_{eq}^2}{(R_{eq} + R_L)^2}$$

= $\frac{(4kTB) R_L R_{eq}}{R_{eq} + R_L}$
= $4kTB \frac{R_L R_3 (R_1 + R_2)}{R_1 R_3 + R_2 R_3 + R_1 R_L + R_2 R_L + R_3 R_L}$

Note that we could have considered the parallel combination of R_3 and R_L as an equivalent load resistor and found the Thevenin equivalent. Let

$$R_{||} = \frac{R_3 R_L}{R_3 + R_L}$$

The Thevenin equivalent resistance of the whole circuit is then

$$R_{eq2} = \frac{R_{||}(R_1 + R_2)}{R_{||} + R_1 + R_2} = \frac{\frac{R_3R_L}{R_3 + R_L}(R_1 + R_2)}{\frac{R_3R_L}{R_3 + R_L} + R_1 + R_2}$$
$$= \frac{R_L R_3 (R_1 + R_2)}{R_1 R_3 + R_2 R_3 + R_1 R_L + R_2 R_L + R_3 R_L}$$

- -

and the mean-square output noise voltage is now

$$V_0^2 = 4kTBR_{\rm eq2}$$

which is the same result as obtained before.

b. With $R_1 = 2000 \ \Omega$, $R_2 = R_L = 300 \ \Omega$, and $R_3 = 500 \ \Omega$, we have

$$\frac{V_0^2}{B} = 4kTB \frac{R_L R_3 (R_1 + R_2)}{R_1 R_3 + R_2 R_3 + R_1 R_L + R_2 R_L + R_3 R_L}$$

=
$$\frac{4 (1.38 \times 10^{-23}) (290) (300) (500) (2000 + 300)}{2000 (500) + 300 (500) + 2000 (300) + 300 (300) + 500 (300)}$$

=
$$2.775 \times 10^{-18} \text{ V}^2/\text{Hz}$$

Problem A.4

Find the equivalent resistance for the R_1 , R_2 , R_3 combination and set R_L equal to this to get

$$R_L = \frac{R_3 \left(R_1 + R_2 \right)}{R_1 + R_2 + R_3}$$

Problem A.5

Using Nyquist's formula, we find the equivalent resistance looking back into the terminals with $V_{\rm rms}$ across them. It is

$$\begin{aligned} R_{\rm eq} &= 50 \ {\rm k} \parallel 20 \ {\rm k} \parallel (5 \ {\rm k} + 10 \ {\rm k} + 5 \ {\rm k}) \\ &= 50 \ {\rm k} \parallel 20 \ {\rm k} \parallel 20 \ {\rm k} \\ &= 50 \ {\rm k} \parallel 10 \ {\rm k} \\ &= \frac{(50 \ {\rm k}) (10 \ {\rm k})}{50 \ {\rm k} + 10 \ {\rm k}} \\ &= 8,333 \ \Omega \end{aligned}$$

Thus

$$V_{\rm rms}^2 = 4kTR_{\rm eq}B$$

= 4 (1.38 × 10⁻²³) (400) (8333) (2 × 10⁶)
= 3.68 × 10⁻¹⁰ V²

which gives

$$V_{\rm rms} = 19.18 \ \mu {\rm V} \ {\rm rms}$$

To find the noise figure, we first determine the noise power due to a source at the output, then due to the source and the network, and take the ratio of the latter to the former. Initially assume unmatched conditions. The results are

$$V_{0}^{2}\Big|_{\text{due to } R_{S}, \text{ only}} = \left(\frac{R_{2} \parallel R_{L}}{R_{S} + R_{1} + R_{2} \parallel R_{L}}\right)^{2} (4kTR_{S}B)$$

$$V_{0}^{2}\Big|_{\text{due to } R_{1} \text{ and } R_{2}} = \left(\frac{R_{2} \parallel R_{L}}{R_{S} + R_{1} + R_{2} \parallel R_{L}}\right)^{2} (4kTR_{1}B)$$

$$+ \left(\frac{R_{L} \parallel (R_{1} + R_{S})}{R_{2} + (R_{1} + R_{S}) \parallel R_{L}}\right)^{2} (4kTR_{2}B)$$

$$V_0^2 \Big|_{\text{due to } R_S, R_1 \text{ and } R_2} = \left(\frac{R_2 \| R_L}{R_S + R_1 + R_2 \| R_L} \right)^2 [4kT (R_S + R_1) B] \\ + \left(\frac{R_L \| (R_1 + R_S)}{R_2 + (R_1 + R_S) \| R_L} \right)^2 (4kTR_2B)$$

The noise figure is (after some simplification)

$$F = 1 + \frac{R_1}{R_S} + \left(\frac{R_L \| (R_1 + R_S)}{R_2 + (R_1 + R_S) \| R_L}\right)^2 \left(\frac{R_S + R_1 + R_2 \| R_L}{R_2 \| R_L}\right)^2 \frac{R_2}{R_S}$$

In the above,

$$R_a \parallel R_b = \frac{R_a R_b}{R_a + R_b}$$

Note that the noise due to R_L has been excluded because it belongs to the next stage. Since this is a matching circuit, we want the input matched to the source and the output matched to the load. Matching at the input requires that

$$R_S = R_{\rm in} = R_1 + R_2 \parallel R_L = R_1 + \frac{R_2 R_L}{R_2 + R_L}$$

and matching at the output requires that

$$R_L = R_{\text{out}} = R_2 \parallel (R_1 + R_S) = \frac{R_2 (R_1 + R_S)}{R_1 + R_2 + R_S}$$

Next, these expressions are substituted back into the expression for F. After some simplification, this gives

$$F = 1 + \frac{R_1}{R_S} + \left(\frac{2R_L^2 R_S \left(R_1 + R_2 + R_S\right) / \left(R_S - R_1\right)}{R_2^2 \left(R_1 + R_S + R_L\right) + R_L^2 \left(R_1 + R_2 + R_S\right)}\right)^2 \frac{R_2}{R_S}$$

Note that if $R_1 >> R_2$ we then have matched conditions of $R_L \cong R_2$ and $R_S \cong R_1$. Then, the noise figure simplifies to

$$F = 2 + 16\frac{R_1}{R_2}$$

Note that the simple resistive pad matching circuit is very poor from the standpoint of noise. The equivalent noise temperature is found by using

$$T_{e} = T_{0} (F - 1)$$

= $T_{0} \left[1 + 16 \frac{R_{1}}{R_{2}} \right]$

Problem A.7

a. The important relationships are

$$F_{l} = 1 + \frac{T_{e_{l}}}{T_{0}}$$

$$T_{e_{l}} = T_{0} \left(F_{l} - 1\right)$$

$$T_{e_{0}} = T_{e_{1}} + \frac{T_{e_{2}}}{G_{a_{1}}} + \frac{T_{e_{3}}}{G_{a_{1}}G_{a_{2}}}$$

Completion of the table gives

Ampl. No.	F	T_{e_i}	G_{a_i}
1	not needed	$300 \mathrm{K}$	$10 \mathrm{dB} = 10$
2	6 dB	$864.5 { m K}$	30 dB = 1000
3	11 dB	3360.9 K	30 dB = 1000

Therefore,

$$T_{e_0} = 300 + \frac{864.5}{10} + \frac{3360.9}{(10)(1000)}$$

= 386.8 K

Hence,

$$F_0 = 1 + \frac{T_{e_0}}{T_0} \\ = 2.33 = 3.68 \text{ dB}$$

b. With amplifiers 1 and 2 interchanged

$$T_{e_0} = 864.5 + \frac{300}{10} + \frac{3360.9}{(10)(1000)}$$

= 865.14 K

This gives a noise figure of

$$F_0 = 1 + \frac{865.14}{290} \\ = 3.98 = 6 \text{ dB}$$

- c. See part (a) for the noise temperatures.
- d. For B = 50 kHz, $T_S = 1000$ K, and an overall gain of $G_a = 10^7$, we have, for the configuration of part (a)

$$P_{na, \text{ out}} = G_a k (T_0 + T_{e_0}) B$$

= $10^7 (1.38 \times 10^{-23}) (1000 + 386.8) (5 \times 10^4)$
= $9.57 \times 10^{-9} \text{ watts}$

We desire

$$\frac{P_{sa, \text{ out}}}{P_{na, \text{ out}}} = 10^4 = \frac{P_{sa, \text{ out}}}{9.57 \times 10^{-9}}$$

which gives

$$P_{sa, \text{ out}} = 9.57 \times 10^{-5} \text{ watts}$$

For part (b), we have

$$P_{na, \text{ out}} = 10^7 (1.38 \times 10^{-23}) (1000 + 865.14) (5 \times 10^4)$$

= 1.29 × 10⁻⁸ watts

Once again, we desire

$$\frac{P_{sa, \text{ out}}}{P_{na, \text{ out}}} = 10^4 = \frac{P_{sa, \text{ out}}}{1.29 \times 10^{-8}}$$

which gives

$$P_{sa, \text{ out}} = 1.29 \times 10^{-4} \text{ watts}$$

and

$$P_{sa, \text{ in}} = \frac{P_{sa, \text{ out}}}{G_a} = 1.29 \times 10^{-11} \text{ watts}$$

a. The noise figure of the cascade is

$$F_{\text{overall}} = F_1 + \frac{F_2 - 1}{G_{a_1}} = L + \frac{F - 1}{(1/L)} = LF$$

b. For two identical attenuator-amplifier stages

$$F_{\text{overall}} = L + \frac{F-1}{(1/L)} + \frac{L-1}{(1/L)L} + \frac{F-1}{(1/L)L(1/L)} = 2LF - 1 \approx 2LF, \ L >> 1$$

c. Generalizing, for N stages we have

$$F_{\text{overall}} \approx NFL$$

Problem A.9

a. The data for this problem is

Stage	F_i	G_i
1 (preamp)	2 dB = 1.58	G_1
2 (mixer)	8 dB = 6.31	1.5 dB = 1.41
3 (amplifier)	5 dB = 3.16	30 dB = 1000

The overall noise figure is

$$F = F_1 + \frac{F_2 - 1}{G_1} + \frac{F_3 - 1}{G_1 G_2}$$

which gives

5 dB =
$$3.16 = 1.58 + \frac{6.31 - 1}{G_1} + \frac{3.16 - 1}{1.41G_1}$$

or

$$3.16 - 1.58 = \frac{6.31 - 1}{G_1} + \frac{3.16 - 1}{1.41G_1}$$

or $G_1 = \frac{5.31}{1.58} + \frac{2.16}{(1.41)(1.58)} = 4.33 = 6.37 \text{ dB}$

b. First, assume that $G_1 = 15 \text{ dB} = 31.62$. Then

$$F = 1.58 + \frac{6.31 - 1}{31.62} + \frac{3.16 - 1}{(1.41)(31.62)}$$
$$= 1.8 = 2.54 \text{ dB}$$

Then

$$T_{es} = T_0 (F - 1)$$

= 290 (1.8 - 1)
= 230.95 K

and

$$T_{\text{overall}} = T_{es} + T_a$$

= 230.95 + 300
= 530.95 K

Now use G_1 as found in part (a):

$$F = 3.16$$

$$T_{es} = 290 (3.16 - 1) = 626.4 \text{ K}$$

$$T_{overall} = 300 + 626.4 = 926.4 \text{ K}$$

c. For $G_1 = 15 \text{ dB} = 31.62$, $G_a = (31.62)(1.41)(1000) = 4.46 \times 10^4$. Thus

$$P_{na, \text{ out}} = G_a k T_{\text{overall}} B$$

= $(4.46 \times 10^4) (1.38 \times 10^{-23}) (530.95) (10^7)$
= 3.27×10^{-6} watts

For $G_1 = 6.37 \text{ dB} = 4.33$, $G_a = (4.33)(1.41)(1000) = 6.11 \times 10^3$. Thus

$$P_{na, \text{ out}} = (6.11 \times 10^3) (1.38 \times 10^{-23}) (926.4) (10^7)$$

= 7.81 × 10⁻⁷ watts

Note that for the second case, we get less noise power out even with a larger T_{overall} . This is due to the lower gain of stage 1, which more than compensates for the larger input noise power.

d. A transmission line with loss L = 2 dB connects the antenna to the preamp. We first find T_S for the transmission line/preamp/mixer/amp chain:

$$F_S = F_{\rm TL} + \frac{F_1 - 1}{G_{\rm TL}} + \frac{F_2 - 1}{G_{\rm TL}G_1} + \frac{F_3 - 1}{G_{\rm TL}G_1G_2},$$

where

$$G_{\rm TL} = 1/L = 10^{-2/10} = 0.631$$
 and $F_{\rm TL} = L = 10^{2/10} = 1.58$

Assume two cases for G_1 : 15 dB and 6.37 dB. First, for $G_1 = 15$ dB = 31.6, we have

$$F_S = 1.58 + \frac{1.58 - 1}{0.631} + \frac{6.31 - 1}{(0.631)(31.6)} + \frac{3.16 - 1}{(0.631)(31.6)(1.41)} = 2.84$$

This gives

$$T_S = 290 (2.84 - 1) = 534 \text{ K}$$

and

$$T_{\text{overall}} = 534 + 300 = 834 \text{ K}$$

Now, for $G_1 = 6.37 \text{ dB} = 4.33$, we have

$$F_S = 1.58 + \frac{1.58 - 1}{0.631} + \frac{6.31 - 1}{(0.631)(4.33)} + \frac{3.16 - 1}{(0.631)(4.33)(1.41)} = 5.00$$

This gives

$$T_S = 290 \, (5.00 - 1) = 1160 \, \mathrm{K}$$

and

$$T_{\text{overall}} = 1160 + 300 = 1460 \text{ K}$$

Problem A.10

a. (a) Using

$$P_{na, \text{ out}} = G_a k T_S B = (10^8) (1.38 \times 10^{-23}) (1800) (3 \times 10^6)$$

with the given values yields

$$P_{na, \text{ out}} = 7.45 \times 10^{-5} \text{ watts}$$

b. We want

$$\frac{P_{sa, \text{ out}}}{P_{na, \text{ out}}} = 10^5$$

or

$$P_{sa, \text{ out}} = (10^5) (7.45 \times 10^{-5}) = 7.45 \text{ watts}$$

This gives

$$P_{sa, \text{ in }} = \frac{P_{sa, \text{ out }}}{G_a} = \frac{7.45}{10^8} = 7.45 \times 10^{-8} \text{ watts}$$

= -71.28 dBW = -41.28 dBm

a. For $\Delta A = 1$ dB, Y = 1.259 and the effective noise temperature is

$$T_e = \frac{600 - (1.259)(300)}{1.259 - 1} = 858.3 \text{ K}$$

For $\Delta A = 1.5$ dB, Y = 1.413 and the effective noise temperature is

$$T_e = \frac{600 - (1.413)(300)}{1.413 - 1} = 426.4 \text{ K}$$

For $\Delta A = 2$ dB, Y = 1.585 and the effective noise temperature is

$$T_e = \frac{600 - (1.585)(300)}{1.585 - 1} = 212.8 \text{ K}$$

b. These values can be converted to noise figure using

$$F = 1 + \frac{T_e}{T_0}$$

With $T_0 = 290$ K, we get the following values: (1) For $\Delta A = 1$ dB, F = 5.98 dB; (2) For $\Delta A = 1.5$ dB, F = 3.938 dB; (3) For $\Delta A = 2$ dB, F = 2.39 dB.

Problem A.12

a. Using the data given, we can determine the following:

$$\lambda = 0.039 \text{ m}$$
$$\left(\frac{\lambda}{4\pi d}\right)^2 = -202.4 \text{ dB}$$
$$G_T = 39.2 \text{ dB}$$
$$P_T G_T = 74.2 \text{ dBW}$$

This gives

$$P_S = -202.4 + 74.2 + 6 - 5 = -127.2 \text{ dBW}$$

b. Using $P_n = kT_e B$ for the noise power, we get

$$P_{n} = 10 \log_{10} \left[kT_{0} \left(\frac{T_{e}}{T_{0}} \right) B \right]$$

= $10 \log_{10} \left[kT_{0} \right] + 10 \log_{10} \left(\frac{T_{e}}{T_{0}} \right) + 10 \log_{10} (B)$
= $-174 + 10 \log_{10} \left(\frac{1000}{290} \right) + 10 \log_{10} (10^{6})$
= -108.6 dBm
= -138.6 dBW

c.

$$\left(\frac{P_S}{P_n}\right)_{dB} = -127.2 - (-138.6)$$

= 11.4 dB
= $10^{1.14} = 13.8$ ratio

d. Assuming the SNR = $z = E_b/N_0 = 13.8$, we get the results for various digital signaling techniques given in the table below:

Modulation type	Error probability
BPSK	$Q\left(\sqrt{2z}\right) = 7.4 \times 10^{-8}$
DPSK	$\frac{1}{2}e^{-z} = 5.06 \times 10^{-7}$
Noncoh. FSK	$\frac{1}{2}e^{-z/2} = 5.03 \times 10^{-4}$
QPSK	Same as BPSK