Problem A. 1

All parts of the problem are solved using the relation

$$
V_{\mathrm{rms}}=\sqrt{4 k T R B}
$$

where

$$
\begin{aligned}
k & =1.38 \times 10^{-23} \mathrm{~J} / \mathrm{K} \\
B & =30 \mathrm{MHz}=3 \times 10^{7} \mathrm{~Hz}
\end{aligned}
$$

a. For $R=10,000$ ohms and $T=T_{0}=290 \mathrm{~K}$

$$
\begin{aligned}
V_{\mathrm{rms}} & =\sqrt{4\left(1.38 \times 10^{-23}\right)(290)\left(10^{4}\right)\left(3 \times 10^{7}\right)} \\
& =6.93 \times 10^{-5} \mathrm{~V} \mathrm{rms} \\
& =69.3 \mu \mathrm{~V} \mathrm{rms}
\end{aligned}
$$

b. V_{rms} is smaller than the result in part (a) by a factor of $\sqrt{10}=3.16$. Thus

$$
V_{\mathrm{rms}}=21.9 \mu \mathrm{~V} \mathrm{rms}
$$

c. $V_{\text {rms }}$ is smaller than the result in part (a) by a factor of $\sqrt{100}=10$. Thus

$$
V_{\mathrm{rms}}=6.93 \mu \mathrm{~V} \mathrm{rms}
$$

d. Each answer becomes smaller by factors of $2, \sqrt{10}=3.16$, and 10, respectively.

Problem A. 2

Use

$$
I=I_{s}\left[\exp \left(\frac{e V}{k T}\right)-1\right]
$$

We want $I>20 I_{s}$ or $\exp \left(\frac{e V}{k T}\right)-1>20$.
a. At $T=290 \mathrm{~K}, \frac{e}{k T}=\frac{1.6 \times 10^{-19}}{1.38 \times 10^{23} \times 290} \cong 40$, so we have $\exp (40 \mathrm{~V})>21$ giving

$$
\begin{aligned}
V & >\frac{\ln (21)}{40}=0.0761 \text { volts } \\
i_{\mathrm{rms}}^{2} & \cong 2 e I B \simeq 2 e B I_{s} \exp \left(\frac{e V}{k T}\right) \\
\text { or } \frac{i_{\mathrm{rms}}^{2}}{B} & =2 e I_{s} \exp \left(\frac{e V}{k T}\right) \\
& =2\left(1.6 \times 10^{-19}\right)\left(1.5 \times 10^{-5}\right) \exp (40 \times 0.0761) \\
& =1.0075 \times 10^{-22} \mathrm{~A}^{2} / \mathrm{Hz}
\end{aligned}
$$

b. If $T=90 \mathrm{~K}$, then $\frac{e}{k T} \cong 129$, and for $I>20 I_{s}$, we need $\exp (129 V)>21$ or

$$
V>\frac{\ln (21)}{129}=2.36 \times 10^{-2} \text { volts }
$$

Thus

$$
\begin{aligned}
\frac{i_{\mathrm{rms}}^{2}}{B} & =2\left(1.6 \times 10^{-19}\right)\left(1.5 \times 10^{-5}\right) \exp (129 \times 0.0236) \\
& =1.0079 \times 10^{-22} \mathrm{~A}^{2} / \mathrm{Hz}
\end{aligned}
$$

approximately as before.

Problem A. 3

a. Use Nyquist's formula to get the equivalent circuit of $R_{\text {eq }}$ in parallel with R_{L}, where $R_{\text {eq }}$ is given by

$$
R_{\mathrm{eq}}=\frac{R_{3}\left(R_{1}+R_{2}\right)}{R_{1}+R_{2}+R_{3}}
$$

The noise equivalent circuit consists of a rms noise voltage, $V_{\text {eq }}$, in series with $R_{\text {eq }}$ and a rms noise voltage, V_{L}, in series with with R_{L} with these series combinations being in parallel. The equivalent noise voltages are

$$
\begin{aligned}
V_{\mathrm{eq}} & =\sqrt{4 k T R_{\mathrm{eq}} B} \\
V_{L} & =\sqrt{4 k T R_{L} B}
\end{aligned}
$$

The rms noise voltages across the parallel combination of $R_{\text {eq }}$ and R_{L}, by using superposition and voltage division, are

$$
V_{01}=\frac{V_{\mathrm{eq}} R_{L}}{R_{\mathrm{eq}}+R_{L}} \text { and } V_{02}=\frac{V_{L} R_{\mathrm{eq}}}{R_{\mathrm{eq}}+R_{L}}
$$

Adding noise powers to get V_{0}^{2} we obtain

$$
\begin{aligned}
V_{0}^{2} & =\frac{V_{\mathrm{eq}}^{2} R_{L}^{2}}{\left(R_{\mathrm{eq}}+R_{L}\right)^{2}}+\frac{V_{L}^{2} R_{\mathrm{eq}}^{2}}{\left(R_{\mathrm{eq}}+R_{L}\right)^{2}} \\
& =\frac{(4 k T B) R_{L} R_{\mathrm{eq}}}{R_{\mathrm{eq}}+R_{L}} \\
& =4 k T B \frac{R_{L} R_{3}\left(R_{1}+R_{2}\right)}{R_{1} R_{3}+R_{2} R_{3}+R_{1} R_{L}+R_{2} R_{L}+R_{3} R_{L}}
\end{aligned}
$$

Note that we could have considered the parallel combination of R_{3} and R_{L} as an equivalent load resistor and found the Thevenin equivalent. Let

$$
R_{\| \mid}=\frac{R_{3} R_{L}}{R_{3}+R_{L}}
$$

The Thevenin equivalent resistance of the whole circuit is then

$$
\begin{aligned}
R_{\mathrm{eq} 2} & =\frac{R_{\|}\left(R_{1}+R_{2}\right)}{R_{\|}+R_{1}+R_{2}}=\frac{\frac{R_{3} R_{L}}{R_{3}+R_{L}}\left(R_{1}+R_{2}\right)}{R_{3} R_{L}+R_{1}+R_{2}} \\
& =\frac{R_{L} R_{3}\left(R_{1}+R_{2}\right)}{R_{1} R_{3}+R_{2} R_{3}+R_{1} R_{L}+R_{2} R_{L}+R_{3} R_{L}}
\end{aligned}
$$

and the mean-square output noise voltage is now

$$
V_{0}^{2}=4 k T B R_{\mathrm{eq} 2}
$$

which is the same result as obtained before.
b. With $R_{1}=2000 \Omega, R_{2}=R_{L}=300 \Omega$, and $R_{3}=500 \Omega$, we have

$$
\begin{aligned}
\frac{V_{0}^{2}}{B} & =4 k T B \frac{R_{L} R_{3}\left(R_{1}+R_{2}\right)}{R_{1} R_{3}+R_{2} R_{3}+R_{1} R_{L}+R_{2} R_{L}+R_{3} R_{L}} \\
& =\frac{4\left(1.38 \times 10^{-23}\right)(290)(300)(500)(2000+300)}{2000(500)+300(500)+2000(300)+300(300)+500(300)} \\
& =2.775 \times 10^{-18} \mathrm{~V}^{2} / \mathrm{Hz}
\end{aligned}
$$

Problem A. 4
Find the equivalent resistance for the R_{1}, R_{2}, R_{3} combination and set R_{L} equal to this to get

$$
R_{L}=\frac{R_{3}\left(R_{1}+R_{2}\right)}{R_{1}+R_{2}+R_{3}}
$$

Problem A. 5

Using Nyquist's formula, we find the equivalent resistance looking back into the terminals with $V_{\text {rms }}$ across them. It is

$$
\begin{aligned}
R_{\mathrm{eq}} & =50 \mathrm{k}\|20 \mathrm{k}\|(5 \mathrm{k}+10 \mathrm{k}+5 \mathrm{k}) \\
& =50 \mathrm{k}\|20 \mathrm{k}\| 20 \mathrm{k} \\
& =50 \mathrm{k} \| 10 \mathrm{k} \\
& =\frac{(50 \mathrm{k})(10 \mathrm{k})}{50 \mathrm{k}+10 \mathrm{k}} \\
& =8,333 \Omega
\end{aligned}
$$

Thus

$$
\begin{aligned}
V_{\mathrm{rms}}^{2} & =4 k T R_{\mathrm{eq}} B \\
& =4\left(1.38 \times 10^{-23}\right)(400)(8333)\left(2 \times 10^{6}\right) \\
& =3.68 \times 10^{-10} \mathrm{~V}^{2}
\end{aligned}
$$

which gives

$$
V_{\mathrm{rms}}=19.18 \mu \mathrm{~V} \mathrm{rms}
$$

Problem A. 6

To find the noise figure, we first determine the noise power due to a source at the output, then due to the source and the network, and take the ratio of the latter to the former. Initally assume unmatched conditions. The results are

$$
\begin{aligned}
\left.V_{0}^{2}\right|_{\text {due to } R_{S}, \text { only }}= & \left(\frac{R_{2} \| R_{L}}{R_{S}+R_{1}+R_{2} \| R_{L}}\right)^{2}\left(4 k T R_{S} B\right) \\
\left.V_{0}^{2}\right|_{\text {due to } R_{1} \text { and } R_{2}}= & \left(\frac{R_{2} \| R_{L}}{R_{S}+R_{1}+R_{2} \| R_{L}}\right)^{2}\left(4 k T R_{1} B\right) \\
& +\left(\frac{R_{L} \|\left(R_{1}+R_{S}\right)}{R_{2}+\left(R_{1}+R_{S}\right) \| R_{L}}\right)^{2}\left(4 k T R_{2} B\right) \\
\left.V_{0}^{2}\right|_{\text {due to } R_{S}, R_{1} \text { and } R_{2}}= & \left(\frac{R_{2} \| R_{L}}{R_{S}+R_{1}+R_{2} \| R_{L}}\right)^{2}\left[4 k T\left(R_{S}+R_{1}\right) B\right] \\
& +\left(\frac{R_{L} \|\left(R_{1}+R_{S}\right)}{R_{2}+\left(R_{1}+R_{S}\right) \| R_{L}}\right)^{2}\left(4 k T R_{2} B\right)
\end{aligned}
$$

The noise figure is (after some simplification)

$$
F=1+\frac{R_{1}}{R_{S}}+\left(\frac{R_{L} \|\left(R_{1}+R_{S}\right)}{R_{2}+\left(R_{1}+R_{S}\right) \| R_{L}}\right)^{2}\left(\frac{R_{S}+R_{1}+R_{2} \| R_{L}}{R_{2} \| R_{L}}\right)^{2} \frac{R_{2}}{R_{S}}
$$

In the above,

$$
R_{a} \| R_{b}=\frac{R_{a} R_{b}}{R_{a}+R_{b}}
$$

Note that the noise due to R_{L} has been excluded because it belongs to the next stage. Since this is a matching circuit, we want the input matched to the source and the output matched to the load. Matching at the input requires that

$$
R_{S}=R_{\mathrm{in}}=R_{1}+R_{2} \| R_{L}=R_{1}+\frac{R_{2} R_{L}}{R_{2}+R_{L}}
$$

and matching at the output requires that

$$
R_{L}=R_{\mathrm{out}}=R_{2} \|\left(R_{1}+R_{S}\right)=\frac{R_{2}\left(R_{1}+R_{S}\right)}{R_{1}+R_{2}+R_{S}}
$$

Next, these expressions are substituted back into the expression for F. After some simplification, this gives

$$
F=1+\frac{R_{1}}{R_{S}}+\left(\frac{2 R_{L}^{2} R_{S}\left(R_{1}+R_{2}+R_{S}\right) /\left(R_{S}-R_{1}\right)}{R_{2}^{2}\left(R_{1}+R_{S}+R_{L}\right)+R_{L}^{2}\left(R_{1}+R_{2}+R_{S}\right)}\right)^{2} \frac{R_{2}}{R_{S}}
$$

Note that if $R_{1} \gg R_{2}$ we then have matched conditions of $R_{L} \cong R_{2}$ and $R_{S} \cong R_{1}$. Then, the noise figure simplifies to

$$
F=2+16 \frac{R_{1}}{R_{2}}
$$

Note that the simple resistive pad matching circuit is very poor from the standpoint of noise. The equivalent noise temperature is found by using

$$
\begin{aligned}
T_{e} & =T_{0}(F-1) \\
& =T_{0}\left[1+16 \frac{R_{1}}{R_{2}}\right]
\end{aligned}
$$

Problem A. 7

a. The important relationships are

$$
\begin{gathered}
F_{l}=1+\frac{T_{e_{l}}}{T_{0}} \\
T_{e_{l}}=T_{0}\left(F_{l}-1\right) \\
T_{e_{0}}=T_{e_{1}}+\frac{T_{e_{2}}}{G_{a_{1}}}+\frac{T_{e_{3}}}{G_{a_{1}} G_{a_{2}}}
\end{gathered}
$$

Completion of the table gives

Ampl. No.	F	$T_{e_{i}}$	$G_{a_{i}}$
1	not needed	300 K	$10 \mathrm{~dB}=10$
2	6 dB	864.5 K	$30 \mathrm{~dB}=1000$
3	11 dB	3360.9 K	$30 \mathrm{~dB}=1000$

Therefore,

$$
\begin{aligned}
T_{e_{0}} & =300+\frac{864.5}{10}+\frac{3360.9}{(10)(1000)} \\
& =386.8 \mathrm{~K}
\end{aligned}
$$

Hence,

$$
\begin{aligned}
F_{0} & =1+\frac{T_{e_{0}}}{T_{0}} \\
& =2.33=3.68 \mathrm{~dB}
\end{aligned}
$$

b. With amplifiers 1 and 2 interchanged

$$
\begin{aligned}
T_{e_{0}} & =864.5+\frac{300}{10}+\frac{3360.9}{(10)(1000)} \\
& =865.14 \mathrm{~K}
\end{aligned}
$$

This gives a noise figure of

$$
\begin{aligned}
F_{0} & =1+\frac{865.14}{290} \\
& =3.98=6 \mathrm{~dB}
\end{aligned}
$$

c. See part (a) for the noise temperatures.
d. For $B=50 \mathrm{kHz}, T_{S}=1000 \mathrm{~K}$, and an overall gain of $G_{a}=10^{7}$, we have, for the configuration of part (a)

$$
\begin{aligned}
P_{n a, \text { out }} & =G_{a} k\left(T_{0}+T_{e_{0}}\right) B \\
& =10^{7}\left(1.38 \times 10^{-23}\right)(1000+386.8)\left(5 \times 10^{4}\right) \\
& =9.57 \times 10^{-9} \mathrm{watts}
\end{aligned}
$$

We desire

$$
\frac{P_{s a, \text { out }}}{P_{n a, \text { out }}}=10^{4}=\frac{P_{s a, \text { out }}}{9.57 \times 10^{-9}}
$$

which gives

$$
P_{s a, \text { out }}=9.57 \times 10^{-5} \mathrm{watts}
$$

For part (b), we have

$$
\begin{aligned}
P_{\text {na, out }} & =10^{7}\left(1.38 \times 10^{-23}\right)(1000+865.14)\left(5 \times 10^{4}\right) \\
& =1.29 \times 10^{-8} \mathrm{watts}
\end{aligned}
$$

Once again, we desire

$$
\frac{P_{s a, \text { out }}}{P_{n a, \text { out }}}=10^{4}=\frac{P_{s a, \text { out }}}{1.29 \times 10^{-8}}
$$

which gives

$$
P_{\text {sa }, \text { out }}=1.29 \times 10^{-4} \mathrm{watts}
$$

and

$$
P_{s a, \text { in }}=\frac{P_{s a, \text { out }}}{G_{a}}=1.29 \times 10^{-11} \mathrm{watts}
$$

Problem A. 8

a. The noise figure of the cascade is

$$
F_{\text {overall }}=F_{1}+\frac{F_{2}-1}{G_{a_{1}}}=L+\frac{F-1}{(1 / L)}=L F
$$

b. For two identical attenuator-amplifier stages

$$
F_{\text {overall }}=L+\frac{F-1}{(1 / L)}+\frac{L-1}{(1 / L) L}+\frac{F-1}{(1 / L) L(1 / L)}=2 L F-1 \approx 2 L F, \quad L \gg 1
$$

c. Generalizing, for N stages we have

$$
F_{\text {overall }} \approx N F L
$$

Problem A. 9

a. The data for this problem is

Stage	F_{i}	G_{i}
1 (preamp)	$2 \mathrm{~dB}=1.58$	G_{1}
2 (mixer)	$8 \mathrm{~dB}=6.31$	$1.5 \mathrm{~dB}=1.41$
3 (amplifier)	$5 \mathrm{~dB}=3.16$	$30 \mathrm{~dB}=1000$

The overall noise figure is

$$
F=F_{1}+\frac{F_{2}-1}{G_{1}}+\frac{F_{3}-1}{G_{1} G_{2}}
$$

which gives

$$
5 \mathrm{~dB}=3.16=1.58+\frac{6.31-1}{G_{1}}+\frac{3.16-1}{1.41 G_{1}}
$$

or

$$
\begin{aligned}
3.16-1.58 & =\frac{6.31-1}{G_{1}}+\frac{3.16-1}{1.41 G_{1}} \\
\text { or } G_{1} & =\frac{5.31}{1.58}+\frac{2.16}{(1.41)(1.58)}=4.33=6.37 \mathrm{~dB}
\end{aligned}
$$

b. First, assume that $G_{1}=15 \mathrm{~dB}=31.62$. Then

$$
\begin{aligned}
F & =1.58+\frac{6.31-1}{31.62}+\frac{3.16-1}{(1.41)(31.62)} \\
& =1.8=2.54 \mathrm{~dB}
\end{aligned}
$$

Then

$$
\begin{aligned}
T_{e s} & =T_{0}(F-1) \\
& =290(1.8-1) \\
& =230.95 \mathrm{~K}
\end{aligned}
$$

and

$$
\begin{aligned}
T_{\text {overall }} & =T_{e s}+T_{a} \\
& =230.95+300 \\
& =530.95 \mathrm{~K}
\end{aligned}
$$

Now use G_{1} as found in part (a):

$$
\begin{aligned}
F & =3.16 \\
T_{e s} & =290(3.16-1)=626.4 \mathrm{~K} \\
T_{\text {overall }} & =300+626.4=926.4 \mathrm{~K}
\end{aligned}
$$

c. For $G_{1}=15 \mathrm{~dB}=31.62, G_{a}=(31.62)(1.41)(1000)=4.46 \times 10^{4}$. Thus

$$
\begin{aligned}
P_{\text {na, out }} & =G_{a} k T_{\text {overall }} B \\
& =\left(4.46 \times 10^{4}\right)\left(1.38 \times 10^{-23}\right)(530.95)\left(10^{7}\right) \\
& =3.27 \times 10^{-6} \text { watts }
\end{aligned}
$$

For $G_{1}=6.37 \mathrm{~dB}=4.33, G_{a}=(4.33)(1.41)(1000)=6.11 \times 10^{3}$. Thus

$$
\begin{aligned}
P_{n a, \text { out }} & =\left(6.11 \times 10^{3}\right)\left(1.38 \times 10^{-23}\right)(926.4)\left(10^{7}\right) \\
& =7.81 \times 10^{-7} \text { watts }
\end{aligned}
$$

Note that for the second case, we get less noise power out even wth a larger $T_{\text {overall }}$. This is due to the lower gain of stage 1, which more than compensates for the larger input noise power.
d. A transmission line with loss $L=2 \mathrm{~dB}$ connects the antenna to the preamp. We first find T_{S} for the transmission line/preamp/mixer/amp chain:

$$
F_{S}=F_{\mathrm{TL}}+\frac{F_{1}-1}{G_{\mathrm{TL}}}+\frac{F_{2}-1}{G_{\mathrm{TL}} G_{1}}+\frac{F_{3}-1}{G_{\mathrm{TL}} G_{1} G_{2}},
$$

where

$$
G_{\mathrm{TL}}=1 / L=10^{-2 / 10}=0.631 \text { and } F_{\mathrm{TL}}=L=10^{2 / 10}=1.58
$$

Assume two cases for $G_{1}: 15 \mathrm{~dB}$ and 6.37 dB . First, for $G_{1}=15 \mathrm{~dB}=31.6$, we have

$$
\begin{aligned}
F_{S} & =1.58+\frac{1.58-1}{0.631}+\frac{6.31-1}{(0.631)(31.6)}+\frac{3.16-1}{(0.631)(31.6)(1.41)} \\
& =2.84
\end{aligned}
$$

This gives

$$
T_{S}=290(2.84-1)=534 \mathrm{~K}
$$

and

$$
T_{\text {overall }}=534+300=834 \mathrm{~K}
$$

Now, for $G_{1}=6.37 \mathrm{~dB}=4.33$, we have

$$
\begin{aligned}
F_{S} & =1.58+\frac{1.58-1}{0.631}+\frac{6.31-1}{(0.631)(4.33)}+\frac{3.16-1}{(0.631)(4.33)(1.41)} \\
& =5.00
\end{aligned}
$$

This gives

$$
T_{S}=290(5.00-1)=1160 \mathrm{~K}
$$

and

$$
T_{\text {overall }}=1160+300=1460 \mathrm{~K}
$$

Problem A. 10

a. (a) Using

$$
P_{n a, \text { out }}=G_{a} k T_{S} B=\left(10^{8}\right)\left(1.38 \times 10^{-23}\right)(1800)\left(3 \times 10^{6}\right)
$$

with the given values yields

$$
P_{n a, \text { out }}=7.45 \times 10^{-5} \mathrm{watts}
$$

b. We want

$$
\frac{P_{s a, \text { out }}}{P_{n a, \text { out }}}=10^{5}
$$

or

$$
P_{s a, \text { out }}=\left(10^{5}\right)\left(7.45 \times 10^{-5}\right)=7.45 \text { watts }
$$

This gives

$$
\begin{aligned}
P_{s a, \text { in }} & =\frac{P_{s a, \text { out }}}{G_{a}}=\frac{7.45}{10^{8}}=7.45 \times 10^{-8} \text { watts } \\
& =-71.28 \mathrm{dBW}=-41.28 \mathrm{dBm}
\end{aligned}
$$

Problem A. 11

a. For $\Delta A=1 \mathrm{~dB}, Y=1.259$ and the effective noise temperature is

$$
T_{e}=\frac{600-(1.259)(300)}{1.259-1}=858.3 \mathrm{~K}
$$

For $\Delta A=1.5 \mathrm{~dB}, Y=1.413$ and the effective noise temperature is

$$
T_{e}=\frac{600-(1.413)(300)}{1.413-1}=426.4 \mathrm{~K}
$$

For $\Delta A=2 \mathrm{~dB}, Y=1.585$ and the effective noise temperature is

$$
T_{e}=\frac{600-(1.585)(300)}{1.585-1}=212.8 \mathrm{~K}
$$

b. These values can be converted to noise figure using

$$
F=1+\frac{T_{e}}{T_{0}}
$$

With $T_{0}=290 \mathrm{~K}$, we get the following values: (1) For $\Delta A=1 \mathrm{~dB}, F=5.98 \mathrm{~dB}$; (2) For $\Delta A=1.5 \mathrm{~dB}, F=3.938 \mathrm{~dB}$; (3) For $\Delta A=2 \mathrm{~dB}, F=2.39 \mathrm{~dB}$.

Problem A. 12

a. Using the data given, we can determine the following:

$$
\begin{aligned}
\lambda & =0.039 \mathrm{~m} \\
\left(\frac{\lambda}{4 \pi d}\right)^{2} & =-202.4 \mathrm{~dB} \\
G_{T} & =39.2 \mathrm{~dB} \\
P_{T} G_{T} & =74.2 \mathrm{dBW}
\end{aligned}
$$

This gives

$$
P_{S}=-202.4+74.2+6-5=-127.2 \mathrm{dBW}
$$

b. Using $P_{n}=k T_{e} B$ for the noise power, we get

$$
\begin{aligned}
P_{n} & =10 \log _{10}\left[k T_{0}\left(\frac{T_{e}}{T_{0}}\right) B\right] \\
& =10 \log _{10}\left[k T_{0}\right]+10 \log _{10}\left(\frac{T_{e}}{T_{0}}\right)+10 \log _{10}(B) \\
& =-174+10 \log _{10}\left(\frac{1000}{290}\right)+10 \log _{10}\left(10^{6}\right) \\
& =-108.6 \mathrm{dBm} \\
& =-138.6 \mathrm{dBW}
\end{aligned}
$$

c.

$$
\begin{aligned}
\left(\frac{P_{S}}{P_{n}}\right)_{\mathrm{dB}} & =-127.2-(-138.6) \\
& =11.4 \mathrm{~dB} \\
& =10^{1.14}=13.8 \text { ratio }
\end{aligned}
$$

d. Assuming the $\operatorname{SNR}=z=E_{b} / N_{0}=13.8$, we get the results for various digital signaling techniques given in the table below:

Modulation type	Error probability
BPSK	$Q(\sqrt{2 z})=7.4 \times 10^{-8}$
DPSK	$\frac{1}{2} e^{-z}=5.06 \times 10^{-7}$
Noncoh. FSK	$\frac{1}{2} e^{-z / 2}=5.03 \times 10^{-4}$
QPSK	Same as BPSK

