Data Structures Using Java

Instructor’s Manual - Chapter 1

Chapter 1

Software Engineering Principles and Java Classes
	At a Glance

Instructor’s Manual Table of Contents

· Chapter Overview

· Chapter Objectives

· Instructor Notes

· Quick Quizzes

· Discussion Questions

· Projects to Assign

· Key Terms
	Lecture Notes

Chapter Overview

In this chapter, students will learn how to about the different stages of the software lifecycle. The software development stage is emphasized. Algorithm analysis and Big-O notation is explored and the time complexity of various operations is discussed. Java the mechanism that allows you to combine data and the operations on that data in a single unit is called a “class.” Object oriented programming and classes are described in detail.

A class and its members can be described graphically using a notation known as Unified Modeling Language (UML) notation. Components of classes, accessing member of classes and class scope is discussed. Data abstraction, information hiding and abstract data types are studied.

Chapter Objectives

In this chapter, students will:

· Learn about software engineering principles
· Discover what an algorithm is and explore problem-solving techniques

· Become aware of structured design and object-oriented design programming methodologies

· Learn about classes

· Learn about private, protected, and public members of a class

· Explore how classes are implemented

· Become aware of Unified Modeling Language (UML) notation

· Examine constructors and destructors

· Learn about the abstract data type (ADT)

· Explore how classes are used to implement ADT

Instructor Notes

Introduction
Powerful yet easy to use software has changed the way we live and communicate but software is not created overnight. Software engineering is a branch of computer science which specializes in the different phases of the software development cycle. This chapter briefly describes some of the basic software engineering principles that can simplify program design.
Software Life Cycle

The three stages a program goes through are: development, use and maintenance. A program is conceived and created for some use by a software developer in the software development stage. This is the first and perhaps the most important phase of the software life cycle. A program that is well developed is easy and less expensive to maintain. Once the program is considered complete, it is released for use. Once users begin using the program, they discover problems or have suggestions to improve it. These issues are conveyed to the software developer and the program then enters the maintenance phase. In the software maintenance phase, the program in altered to fix any problems or to improve it. If there are several significant changes, a new version is released.

Quick Quiz
1. True or False: The “use” stage of the software development stage is the most important phase.
Answer: False
2. True or False: A program that is well developed is expensive to maintain.
 Answer: False
3. What are the three phases of the software life cycle?
Answer: Software development, use, and maintenance.

4. What occurs in the software maintenance process?
 Answer: The program is modified to fix problems or to enhance it.
Software Development Phase

The software development process can be divided into 4 phases: analysis, design, implementation, and testing and debugging.

Analysis

This is the most important step. It requires the developer to:

· understand the problem that the software will solve

· understand the requirements in order for the software to perform its method

· understand any data processing and manipulating the program may be asked to do

· if problem is complex, divide it into smaller subproblems and analyze the requirements and needs

of the subproblems

Design

After analyzing the problem, the developer must design an algorithm to solve it. An algorithm is a step-by-step problem solving process in which a solution is reached in a finite amount of time.

Structured Design

Dividing a problem into smaller subproblems is structured design. This design approach is also known as top-down design, stepwise refinement and modular programming. In structured design, each subproblem is analyzed and a solution is obtained to solve the subproblem. The solutions of all the subproblems are combined to solve the overall problem. This process is called structured programming.

Object-Oriented Design

In object-oriented design (OOD), the first step in the problem-solving process is to identify the components called “objects,” and determine how these objects need to interact with one another.

Each object consists of data and operations on those data. An object combines data and operations on the data into a single unit. In OOD, the final program is a collection of interacting objects. A programming language that implements OOD is called an object-oriented programming (OOP) language.

OOD has the three basic principles:

Encapsulation—The ability to combine data and operations in a single unit.

Inheritance—The ability to create new data types from existing data types.

Polymorphism—The ability to use the same expression to denote different operations.

In Java, encapsulation is accomplished via the use of the data types called “classes”.

Implementation

In the implementation phase, you write and compile programming code to implement the classes and methods that were discovered in the design phase. In its final form, a program consists of several methods, each accomplishing a specific goal. Some methods are part of the main program; others are used to implement various operations on objects.

Testing and Debugging

The term “testing” refers to testing the correctness of the program: making sure that the program does what it is supposed to do. The term “debugging” refers to finding and fixing errors, if they exist.

We also rely on testing to determine the quality of the program. The program is run through a series of specific tests, called test cases, in an attempt to find any problems. A test case consists of a set of inputs, user actions, or other initial conditions, and the expected output. Because a test case can be repeated several times, it must be properly documented. Typically, a program manipulates a large set of data. It is therefore impractical (although possible) to create test cases for all possible inputs.

You can categorize test cases into separate categories, called equivalence categories. An equivalence category is a set of input values that are likely to produce the same output. For example, suppose that you have a method that takes an integer as input and returns true if the integer is nonnegative, and false otherwise. In this case, you can form two equivalence categories, one consisting of negative numbers and the other consisting of nonnegative numbers.

There are two types of testing—black-box testing and white-box testing. In black-box testing, you do not know the internal working of the algorithm or method. You know only what the method does. Black-box testing is based on inputs and outputs. The test cases for black-box testing are usually selected by creating equivalence categories. If a method works for one input in the equivalence category, it is expected to work for other inputs in the same category.

White-box testing relies on the internal structure and implementation of a method or algorithm. The objective is to ensure that every part of the method or algorithm is executed at least once. Suppose that you want to ensure whether an if statement works properly. The test cases must consist of at least one input for which the if statement evaluates to true and at least one case for which it evaluates to false. Loops and other structures can be tested similarly.

Quick Quiz
1. What are the 4 phases of the software development cycle?
Answer: Analysis, design, implementation, and testing and debugging.

2. True or False: An algorithm is a step-by-step problem solving process in which a solution is arrived at in a finite amount of time.
Answer: True

3. True or False: Java is an object oriented programming language.
Answer: True
4. The three basic principles of object oriented programming are ____, inheritance and polymorphism.
Answer: encapsulation.
5. ___ testing relies on the internal structure and implementation of a method or algorithm.
Answer: White box
Algorithm Analysis: The Big-O Notation

Usually, there are various ways to design a particular algorithm. Certain algorithms take very little computer time to execute, while others take a considerable amount of time. While analyzing a particular algorithm, we usually count the number of operations the algorithm executes. We focus on the number of operations, not the actual computer time to execute the algorithm. This is due to the fact that a particular algorithm can be implemented on a variety of computers and the speed of the computer can affect the execution time. However, the number of operations performed by the algorithm would be the same on each computer. Usually, in an algorithm, certain operations are dominant.
Suppose that an algorithm performs f(n) basic operations to accomplish a task, where n is the size of the problem. Suppose that you want to determine whether an item is in a list. Moreover, suppose that the size of the list is n. To determine whether or not the item is in the list, there are various algorithms. However, the basic method is to compare the item with the items in the list. Therefore, the performance of the algorithm depends on the number of comparisons.
1

In the case of a search, n is the size of the list and f(n) becomes the count method, that is, f(n) gives the number of comparisons done by the search algorithm. Suppose that, on a particular computer, it takes c units of computer time to execute one operation. Thus, the computer time it would take to execute f(n) operations is cf(n). Clearly, the constant c depends on the speed of the computer, and therefore varies from computer to computer. However, f(n), the number of basic operations, is the same on each computer. If we know how the method f(n) grows as the size of the problem grows, we can determine the efficiency of the algorithm.

The remainder of this section develops a notation that shows how a function f(n) grows as n increases without bound. That is, the section develops a notation that is useful in describing the behavior of the algorithm and gives us the most useful information about the algorithm. First, we define the term “asymptotic.”

Definition: Let f be a function of n. The term “asymptotic” means the study of the function f as n becomes larger and larger without bound.
Consider the functions g(n) = n2 and f(n) = n2+4n+20. Clearly, the function g does not contain any linear term, that is, the coefficient of n in g is zero.

In the algorithm analysis, if the complexity of a function can be described by the complexity of a quadratic method without the linear term, we say that the function is of O(n2), called “Big-O of n2.”

Let f and g be real-valued functions. Assume that f and g are nonnegative.

Definition: We say that f(n) is Big-O of g(n) written f(n) = O(g(n)) if there exists positive constants c and n0 such that
f(n) < cg(n) for all n > n0

Quick Quiz
1. Let f be a method of n. The term ____ means the study of a method f as n becomes larger and larger without bound.
Answer: asymptotic

2. True or False: All algorithms that solve a given problem use the same number of operations.
.
Answer: False

3. True or False: f(4n2) is Big-O of g(n2) .
Answer: True
User-Defined Classes

A class is a collection of a fixed number of components. The components of a class are called the members of the class. The general syntax for defining a class is

modifier(s) class ClassIdentifier modifier(s)
{

classMembers

}

where modifier(s) are used to alter the behavior of the class. ClassMembers generally consist of named constants, variable declarations and/or methods. Some modifiers are public, private, and static.

If a member of a class is a named constant, you declare it just like any other named constant. If it is a variable, it can be declared it like any other variable. If it is a method, it can be defined like any other method. If it is a method, it can (directly) access any member of the class—data members and method members.; when you write the definition of the member method, you can directly access any data member of the class without passing it as a parameter.
The word class is a reserved word in Java and it defines only a data type; no memory is allocated. The data members of a class (also called fields) are classified into three categories: private, public and protected. If a member of a class is private, you cannot access it outside the class. If a member of a class is public, you can access it outside the class.
Constructors

In addition to the methods necessary to implement operations, every class has a special type of method called constructors. A constructor has the same name as the class and there can be more than one constructor in each class. These constructors follow the same rules as overloaded methods. If there are multiple constructors, which constructor executes depends on the type of values passed to the class object when the class object is instantiated.

A constructor executes automatically when an object of that class is created. Constructors are used to guarantee that the instance variables of the class initialize to specific values. There are two types of constructors: with parameters and without parameters. The constructor without parameters is called the default constructor. Constructor methods have no type and therefore cannot be called like other methods.
Unified Modeling Language

A class and its members can be described graphically using Unified Modeling Language (UML) notation. The top box in the UML diagram contains the name of the class. The middle box contains the data members and their data types. The last box contains the member method names, parameter list, and return types. The + (plus) sign in front of a member indicates that it is a public member; the – (minus) sign indicates that it is a private member. The # symbol before a member name indicates that it is a protected member.
Variable Declaration and Object Instantiation

Once a class is defined, you can declare reference variables of that class type. In order to allocate memory space for the variable the operator new is used as follows:
new className() OR new className(argument1, argument2, …, argumentN)

The first statement instantiates the object and initializes the instance variables of the object using the default constructor while the second statement instantiates the object and initializes the instance variables using a constructor with parameters. The number of arguments and their type should match the formal parameters (in the order given) of one of the constructors. If the type of the arguments does not match the formal parameters of any constructor (in the order given), Java uses type conversion and looks for the best match.

Accessing Class Members

Once an object is created, you can access the public members of the class. The general syntax to access a data member of a class object or a class method is:

referenceVariableName.memberName

The dot . operator (period) is called the member access operator.

Built-In Operations on Classes

Most of Java’s built-in operations do not apply to classes. You cannot perform arithmetic operations on class objects. The built-in operation that is valid for classes is the dot operator, (.). A reference variable uses the dot operator to access a public member; classes can use the dot operator to access static public members.

The Assignment Operator and Classes: A Precaution

In shallow copying, two or more reference variables of the same type point to the same object. In deep copying, each reference variable refers to its own object. A way to avoid shallow copying of data is to have the object being copied create a copy of itself, and then return a reference to the copy.
A reference variable has the same scope as other variables. Reference variables can be passed as parameters to methods and returned as method values. A precondition is a statement specifying the condition(s) that must be true before the function is called. A postcondition is a statement specifying what is true after the function is completed.
All material covered above is further explained through a detailed example of defining the class Clock.

The Copy Constructor
The copy constructor is a special constructor that executes when an object is instantiated and initialized using an existing object. It is very useful and will be included in most of the classes. The syntax of the heading of the copy constructor is:
public ClassName(ClassName otherObject)

Classes and the Method toString

Whenever a class is created, Java provides the method toString to the class. This method is used to convert an object to a String object. The methods print and println output the string created by the method toString. The default definition of the method toString creates a string that is the name of the object’s class, followed by the hash code of the object. The method toString is a public value-returning method. It does not take any parameters and returns the address of a String object. The heading of the method toString is:

public String toString()

You can override the default definition of the method toString to convert an object to a desired string.
Static Members of a Class
The modifier static in the heading of a method specifies that the method can be invoked by using the name of the class. Similarly, if a data member of a class is declared using the modifier static, it can be accessed by using the name of the class.

Static Variables (Data Members) of a Class
If a class (e.g. MyClass) has both static and nonstatic data members, when you instantiate objects of the type MyClass, only non-static data members of the class MyClass become the data members of each object. For each static member of the class, Java allocates only one memory space. All MyClass objects refer to the same memory space. In fact, static data members of a class exist even when no object of the class type is instantiated. Moreover, static variables are initialized to their default values.
Finalizer

Finalizers are special types of void methods. A class can have only one finalizer, and the finalizer can have no parameters. The name of the finalizer is finalize. The method finalize automatically executes when the class object goes out of scope.
Quick Quiz

1. True or False: Constructors do not have a type.

Answer: True

2. The name of a finalizer is ____.

Answer: finalize

3. True or False: Constructors do not have any parameters.

Answer: False

4. True or False: A copy constructor is initialized using an existing object.

Answer: True

5. public, private and protected are all ____ that alter the behavior of a class.

Answer: modifiers

Creating Your Own Packages
As you develop classes, you can create packages and categorize your classes. You can import your classes in the same way that you import classes from the packages provided by Java. Every Java SDK usually contains a directory where the compiled versions of the classes are stored.
To create a package and add a class to the package so that the class can be used in a program, you must:
1. Define the class to be public. If the class is not public, it can be used only within the package.

2. Choose a name for the package. To organize your packages, you can create subdirectories within the directory that contains the compiled code of classes.
Once the package is created, you can use the appropriate import command and reserved word package in your program to make use of the class.

If a class is to be used in only one program, or if you have divided your program so that it uses more than one class, rather than create a package, you can directly add the file(s) containing the class(es) to the program.
A project consists of several files, called the project files. Some SDKs include a command that will allow you to add several files to a project. Also, some SDKs usually have commands like build, rebuild, or make (check your software’s documentation) to automatically compile and link all files required to create the executable code. When one or more files in the project change, you can use these commands to recompile and relink the files.
The Reference this
Every object has access to a reference to itself. The name of this reference is the reserved word this. Java implicitly uses the reference this to refer to both the instance variables and the methods of a class. It also uses this reference to implement cascaded method calls.
Inner Classes

Classes that are defined within other classes are called inner classes. An inner class can be either a complete class definition, or an anonymous inner class definition (classes with no name). One of the main uses of inner classes is to handle events.
Abstract Data Types
An ADT is an abstraction of a commonly appearing data structure, along with a set of defined operations on the data structure. Historically, the concept of ADT in computer programming developed as a way of abstracting the common data structure and the associated operations. Along the way, ADT provided information hiding. That is, ADT hides the implementation details of the operations and the data from the users of the ADT. Users can use the operations of an ADT without knowing how the operation is implemented.
Programming Example: Candy Machine

This program simulates a candy machine that sells four items.

The program does the following:

1. Shows the customer the different products sold by the candy machine.

2. Lets the customer make the selection.

3. Shows the customer the cost of the item selected.

4. Accepts money from the customer.

5. Releases the item.

The input to the program is the item selection and the cost of the item and the output is the selected item.
A candy machine has two main components: a built-in cash register, and several dispensers to hold and release the products.

The algorithm for this program is as follows:

1. Show the selection to the customer.

2. Get the selection.

3. If the selection is valid and the dispenser corresponding to the selection is not empty, sell the product.

This program is divided into three functions—showSelection, sellProduct, and main.

Identifying Classes, Objects, and Operations

The hardest part of OOD is to identify the classes and objects. This section describes a common and simple technique to identify classes and objects. Begin with a description of the problem and then identify all of the nouns and verbs. From the list of nouns you choose your classes, and from the list of verbs you choose your operations.

After you identify a class, the next step is to determine three pieces of information:

1. Operations that an object of that class type can perform

2. Operations that can be performed on an object of that class type

3. Information that an object of that class type must maintain

From the list of verbs identified in the problem description, choose a list of possible operations that an object of that class can perform, or has performed, on itself.

Identifying classes via the nouns and verbs from the descriptions of the problem is not the only technique possible. There are several other OOD techniques used in the literature. However, this technique is sufficient for the programming exercises in this book.

Quick Quiz

1. .Java implicitly uses the reference ____ to refer to both the instance variables and the methods of a class.

Answer: this

2. True or False: If a class is not declared public it can only be used within the package it is located in.

Answer: True

3. ____ classes are often used to handle events.

Answer: Inner

4. True or False: One feature of ADTs is information hiding.

Answer: True

5. A(n) ____ inner class definition has no name

Answer: anonymous

Discussion Questions

Some interesting topics of discussion in this chapter include:

· Discuss examples of user-defined classes.

· Discuss ADTs with real world examples.

Projects to Assign

Assign Odd Exercises 1 - 13

Assign Programming Exercises 3, 7, and 8.

Key Terms
· Abstract data type (ADT): a data type that specifies the logical properties without the implementation details

· Asymptotic: the study of the method f as n becomes larger and larger without bound

· Class: collection of a fixed number of components.
· Constructor: has the same name as the class, and executes automatically when an object of that class is created.
· Copy constructor: executes when an object is instantiated and initialized using an existing object.
· Default constructor: constructor without parameters.
· Inner classes: classes that are defined within other classes.
· Instance methods: the member methods of a class.
· Instance variables: the non-static data members of a class.
· Member access operator: the dot . (period) operator; used to access members of a class.
· Members: components of a class.
· Postcondition: A statement specifying what is true after the function call is completed.
· Precondition: A statement specifying the condition(s) that must be true before the function is called.
· Software Life Cycle: the three stages a program goes through are : development, use and maintenance

· Unified Modeling Language: the notation used to graphically depict a class and its members

PAGE
1-1

